Some New Results on Lyapunov-Type Diagonal Stability

Mehmet Gumus

(Joint work with Dr. Jianhong Xu)

Department of Mathematics
Southern Illinois University Carbondale

12/01/2016

Outline

(1) Background and Preliminaries
(2) A Necessary and Sufficient Condition Based on Schur

Complement

- Redheffer's theorem and its extensions
- Algebraic conditions for a set of 2×2 matrices to share a common diagonal solution
(3) A New Characterization for Common Diagonal Solutions
- \mathcal{P}-sets
- An extension to the characterization of diagonal stability involving Hadamard product
(4) α-Stability
- Additive $H(\alpha)$-stability and $P_{0}(\alpha)$-matrices
- On-going work: Common α-scalar Lyapunov solutions
(5) Future Works

Background and Preliminaries

- Consider the first-order linear constant coefficient system of n ordinary differential equations:

$$
\begin{equation*}
\frac{d x}{d t}=A[x(t)-\hat{x}] \tag{1}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times n}$ and $x(t), \hat{x} \in \mathbb{R}^{n}$.

Background and Preliminaries

- Consider the first-order linear constant coefficient system of n ordinary differential equations:

$$
\begin{equation*}
\frac{d x}{d t}=A[x(t)-\hat{x}] \tag{1}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times n}$ and $x(t), \hat{x} \in \mathbb{R}^{n}$.

- \hat{x} is called an equilibrium for this system. If $x(t)$ converges to \hat{x} as $t \rightarrow \infty$ for every choice of the initial data $x(0)$, the equilibrium \hat{x} is said to be asymptotically stable.

Background and Preliminaries

- Consider the first-order linear constant coefficient system of n ordinary differential equations:

$$
\begin{equation*}
\frac{d x}{d t}=A[x(t)-\hat{x}] \tag{1}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times n}$ and $x(t), \hat{x} \in \mathbb{R}^{n}$.

- \hat{x} is called an equilibrium for this system. If $x(t)$ converges to \hat{x} as $t \rightarrow \infty$ for every choice of the initial data $x(0)$, the equilibrium \hat{x} is said to be asymptotically stable.
- The equilibrium is asymptotically stable if and only if each eigenvalue of A has a negative real part. A matrix A satisfying this condition is called a (Hurwitz) stable matrix.

Definition

Let $A \in \mathbb{R}^{n \times n}$ be symmetric matrix. Then A is said to be positive semidefinite (positive definite) if $x^{*} A x \geq 0\left(x^{*} A x>0\right)$ for all nonzero $x \in \mathbb{R}^{n}$.

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite (positive definite) if and only if all of its eigenvalues are nonnegative (positive).
- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite (positive definite) if and only if all its principal minors are nonnegative (positive).
- The determinant of a principal submatrix is called a principal minor.
- We shall denote $A \succeq 0(A \succ 0)$ when A is positive semidefinite (positive definite).

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be (positive) stable if each eigenvalue of A has a positive real part.

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be (positive) stable if each eigenvalue of A has a positive real part.

Lyapunov's Theorem

A matrix $A \in \mathbb{R}^{n \times n}$ is stable if and only if there exists a $P \succ 0$ such that

$$
\begin{equation*}
P A+A^{T} P \succ 0 . \tag{2}
\end{equation*}
$$

Then, P is called a Lyapunov solution of (2).

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be (Lyapunov) diagonally stable if there exists a positive diagonal matrix D such that

$$
\begin{equation*}
D A+A^{T} D \succ 0 \tag{3}
\end{equation*}
$$

Then, D is called a diagonal (Lyapunov) solution of (3).

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be (Lyapunov) diagonally stable if there exists a positive diagonal matrix D such that

$$
\begin{equation*}
D A+A^{T} D \succ 0 . \tag{3}
\end{equation*}
$$

Then, D is called a diagonal (Lyapunov) solution of (3).

Definition

Let $A^{(1)}, A^{(2)}, \ldots, A^{(m)} \in \mathbb{R}^{n \times n}$. If there exists a positive diagonal matrix D such that

$$
\begin{equation*}
D A^{(k)}+\left(A^{(k)}\right)^{T} D \succ 0, k=1,2, \ldots, m, \tag{4}
\end{equation*}
$$

then D is called a common diagonal (Lyapunov) solution of (4). The existence of such a D is interpreted as the simultaneous diagonal stability of $A^{(1)}, A^{(2)}, \ldots, A^{(m)}$.

- Let $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$. The matrix A is stable, having the eigenvalues $1 \pm i$.
- Choosing positive diagonal matrix $D=\left[\begin{array}{cc}2 & \\ & 1\end{array}\right]$, we have

$$
\begin{aligned}
D A+A^{T} D & =\left[\begin{array}{ll}
2 & \\
& 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]+\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & \\
& 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
4 & -1 \\
-1 & 2
\end{array}\right] \succ 0
\end{aligned}
$$

thus A is a diagonally stable matrix.

- Let $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$. The matrix A is stable, having the eigenvalues $1 \pm i$.
- Choosing positive diagonal matrix $D=\left[\begin{array}{cc}2 & \\ & 1\end{array}\right]$, we have

$$
\begin{aligned}
D A+A^{T} D & =\left[\begin{array}{ll}
2 & \\
& 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]+\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & \\
& 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
4 & -1 \\
-1 & 2
\end{array}\right] \succ 0
\end{aligned}
$$

thus A is a diagonally stable matrix.

- Let $B=\left[\begin{array}{cc}2 & -1 \\ 2 & 0\end{array}\right]$. The matrix B is stable, having the eigenvalues $1 \pm i$. However, B is not a diagonally stable matrix.

$$
\begin{aligned}
D B+B^{T} D & =\left[\begin{array}{ll}
d_{1} & \\
& d_{2}
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
2 & 0
\end{array}\right]+\left[\begin{array}{cc}
2 & 2 \\
-1 & 0
\end{array}\right]\left[\begin{array}{ll}
d_{1} & \\
& d_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
4 d_{1} & 2 d_{2}-d_{1} \\
2 d_{2}-d_{1} & 0
\end{array}\right] \nsucc 0 .
\end{aligned}
$$

Applications of diagonal stability

- Dynamic models for biochemical reactions
- Systems theory
- Population dynamics
- Communication networks
- Mathematical economics

Applications of simultaneous diagonal stability

- Large-scale dynamic systems
- Interconnected time-varying and switched systems

A Necessary and Sufficient Condition Based on Schur Complement

- We shall denote $\langle k\rangle=\{1,2, \ldots, k\}$. For $A \in \mathbb{R}^{n \times n}$, let $A[\alpha, \beta]$ be the submatrix of A whose rows and columns are indexed by $\alpha, \beta \subseteq\langle n\rangle$, respectively, and let $A[\alpha]=A[\alpha, \alpha]$.
- The Schur complement of $A[\alpha]$ in A is defined as

$$
\begin{equation*}
A / A[\alpha]=A\left[\alpha^{c}\right]-A\left[\alpha^{c}, \alpha\right] A[\alpha]^{-1} A\left[\alpha, \alpha^{c}\right] \tag{5}
\end{equation*}
$$

where $\alpha^{c}=\langle n\rangle \backslash \alpha$, provided that $A[\alpha]$ is nonsingular.

A Necessary and Sufficient Condition Based on Schur Complement

- We shall denote $\langle k\rangle=\{1,2, \ldots, k\}$. For $A \in \mathbb{R}^{n \times n}$, let $A[\alpha, \beta]$ be the submatrix of A whose rows and columns are indexed by $\alpha, \beta \subseteq\langle n\rangle$, respectively, and let $A[\alpha]=A[\alpha, \alpha]$.
- The Schur complement of $A[\alpha]$ in A is defined as

$$
\begin{equation*}
A / A[\alpha]=A\left[\alpha^{c}\right]-A\left[\alpha^{c}, \alpha\right] A[\alpha]^{-1} A\left[\alpha, \alpha^{c}\right] \tag{5}
\end{equation*}
$$

where $\alpha^{c}=\langle n\rangle \backslash \alpha$, provided that $A[\alpha]$ is nonsingular.

- Consider, for example, the partitioned matrix $A=\left[\begin{array}{cc}B & C \\ D & E\end{array}\right]$, where $A[\alpha]=B, A\left[\alpha^{c}\right]=E, A\left[\alpha^{c}, \alpha\right]=D$, and $A\left[\alpha, \alpha^{c}\right]=C$. Then,

$$
A / A[\alpha]=E-D B^{-1} C
$$

Theorem (Redheffer, 1985)

Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix with $A[\{n\}]>0$ and $\alpha=\langle n-1\rangle$. Then, A is diagonally stable if and only if $A[\alpha]$ and $A^{-1}[\alpha]$ have a common diagonal solution.

Theorem (Redheffer, 1985)

Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix with $A[\{n\}]>0$ and $\alpha=\langle n-1\rangle$. Then, A is diagonally stable if and only if $A[\alpha]$ and $A^{-1}[\alpha]$ have a common diagonal solution.

Theorem (Shorten and Narendra, 2009)

Let $A \in \mathbb{R}^{n \times n}$ be partitioned as $A=\left[\begin{array}{cc}\hat{A} & p \\ q^{T} & r\end{array}\right]$, where $\hat{A} \in \mathbb{R}^{(n-1) \times(n-1)}$ and $r>0$. Then, A is diagonally stable if and only if \hat{A} and $\hat{A}-\frac{p q^{T}}{r}$ have a common diagonal solution.

- $\left(\hat{A}-\frac{p q^{T}}{r}\right)^{-1}=A^{-1}[\langle n-1\rangle]$

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be partitioned as $A=\left[\begin{array}{cc}\hat{A} & p \\ q^{T} & r\end{array}\right]$, where $\hat{A} \in \mathbb{R}^{(n-1) \times(n-1)}$. Then, A is diagonally stable with a diagonal solution $D=\left[\begin{array}{ll}\hat{D} & \\ & x\end{array}\right]$, where $\hat{D} \in \mathbb{R}^{(n-1) \times(n-1)}$, if and only if the following are true:
(i) $r>0$.
(ii) \hat{A} and the Schur complement $A / A[\{n\}]=\hat{A}-\frac{p q^{T}}{r}$ share a common diagonal solution \hat{D}.

Lemma (Horn and Johnson, 1985)

Suppose that $B \in \mathbb{R}^{n \times n}$ is a symmetric matrix and $\alpha \subset\langle n\rangle$. Then, $B \succ 0$ if and only if

$$
B[\alpha] \succ 0
$$

and

$$
B / B[\alpha] \succ 0 .
$$

Slyvester's Determinant Theorem

Let $U \in \mathbb{R}^{n \times m}$ and $V \in \mathbb{R}^{m \times n}$. Then

$$
\operatorname{det}\left(I_{n}+U V\right)=\operatorname{det}\left(I_{m}+V U\right)
$$

where I_{k} is the $k \times k$ identity matrix.

Proof of Theorem: We need to justify that, for some $x>0$,

$$
B=D A+A^{T} D=\left[\begin{array}{cc}
\hat{D} \hat{A}+\hat{A}^{T} \hat{D} & \hat{D} p+x q \\
p^{T} \hat{D}+x q^{T} & 2 x r
\end{array}\right] \succ 0 .
$$

Proof of Theorem: We need to justify that, for some $x>0$,

$$
B=D A+A^{T} D=\left[\begin{array}{cc}
\hat{D} \hat{A}+\hat{A}^{T} \hat{D} & \hat{D} p+x q \\
p^{T} \hat{D}+x q^{T} & 2 x r
\end{array}\right] \succ 0
$$

This, by lemma with $\alpha=\langle n-1\rangle$ and $M=B[\alpha]=\hat{D} \hat{A}+\hat{A}^{T} \hat{D} \succ 0$, is equivalent to that for some $x>0$,

$$
\begin{equation*}
f(x)=B / B[\alpha]=2 x r-\left(p^{T} \hat{D}+x q^{T}\right) M^{-1}(\hat{D} p+x q)>0 . \tag{6}
\end{equation*}
$$

Proof of Theorem: We need to justify that, for some $x>0$,

$$
B=D A+A^{T} D=\left[\begin{array}{cc}
\hat{D} \hat{A}+\hat{A}^{T} \hat{D} & \hat{D} p+x q \\
p^{T} \hat{D}+x q^{T} & 2 x r
\end{array}\right] \succ 0 .
$$

This, by lemma with $\alpha=\langle n-1\rangle$ and $M=B[\alpha]=\hat{D} \hat{A}+\hat{A}^{T} \hat{D} \succ 0$, is equivalent to that for some $x>0$,

$$
\begin{equation*}
f(x)=B / B[\alpha]=2 x r-\left(p^{T} \hat{D}+x q^{T}\right) M^{-1}(\hat{D} p+x q)>0 . \tag{6}
\end{equation*}
$$

From (6), $f(x) \leq 0$ whenever $x \leq 0$. On the other hand,

$$
f(x)=-x^{2} q^{T} M^{-1} q-2 x\left(q^{T} M^{-1} \hat{D} p-r\right)-p^{T} \hat{D} M^{-1} \hat{D} p
$$

Proof of Theorem: We need to justify that, for some $x>0$,

$$
B=D A+A^{T} D=\left[\begin{array}{cc}
\hat{D} \hat{A}+\hat{A}^{T} \hat{D} & \hat{D} p+x q \\
p^{T} \hat{D}+x q^{T} & 2 x r
\end{array}\right] \succ 0 .
$$

This, by lemma with $\alpha=\langle n-1\rangle$ and $M=B[\alpha]=\hat{D} \hat{A}+\hat{A}^{T} \hat{D} \succ 0$, is equivalent to that for some $x>0$,

$$
\begin{equation*}
f(x)=B / B[\alpha]=2 x r-\left(p^{T} \hat{D}+x q^{T}\right) M^{-1}(\hat{D} p+x q)>0 . \tag{6}
\end{equation*}
$$

From (6), $f(x) \leq 0$ whenever $x \leq 0$. On the other hand,

$$
f(x)=-x^{2} q^{T} M^{-1} q-2 x\left(q^{T} M^{-1} \hat{D} p-r\right)-p^{T} \hat{D} M^{-1} \hat{D} p
$$

It suffices to show

$$
\Delta=\left(q^{T} M^{-1} \hat{D} p-r\right)^{2}-\left(q^{T} M^{-1} q\right)\left(p^{T} \hat{D} M^{-1} \hat{D} p\right)>0
$$

Hence, we calculate
$\Delta=\operatorname{det}\left[\begin{array}{cc}-r+q^{T} M^{-1} \hat{D} p & q^{T} M^{-1} q \\ p^{T} \hat{D} M^{-1} \hat{D} p & -r+p^{T} \hat{D} M^{-1} q\end{array}\right]$

Hence, we calculate

$$
\begin{aligned}
\Delta & =\operatorname{det}\left[\begin{array}{cc}
-r+q^{T} M^{-1} \hat{D} p & q^{T} M^{-1} q \\
p^{T} \hat{D} M^{-1} \hat{D} p & -r+p^{T} \hat{D} M^{-1} q
\end{array}\right] \\
& =r^{2} \operatorname{det}\left(l_{2}-\left[\begin{array}{ll}
r^{-1} & \\
& r^{-1}
\end{array}\right]\left[\begin{array}{c}
q^{T} \\
p^{T} \hat{D}
\end{array}\right]\left[\begin{array}{ll}
M^{-1} \hat{D} p & \left.\left.M^{-1} q\right]\right) .
\end{array} . . \begin{array}{ll}
\end{array}\right] .\right.
\end{aligned}
$$

Hence, we calculate

$$
\begin{aligned}
\Delta & =\operatorname{det}\left[\begin{array}{cc}
-r+q^{T} M^{-1} \hat{D} p & q^{T} M^{-1} q \\
p^{T} \hat{D} M^{-1} \hat{D} p & -r+p^{T} \hat{D} M^{-1} q
\end{array}\right] \\
& =r^{2} \operatorname{det}\left(l_{2}-\left[\begin{array}{ll}
r^{-1} & \\
& r^{-1}
\end{array}\right]\left[\begin{array}{c}
q^{T} \\
p^{T} \hat{D}
\end{array}\right]\left[\begin{array}{ll}
M^{-1} \hat{D} p & \left.\left.M^{-1} q\right]\right) .
\end{array} . . \begin{array}{l}
\end{array} .\right.\right.
\end{aligned}
$$

By Sylvester's determinant theorem, we have
$\Delta=r^{2} \operatorname{det}\left(I_{n-1}-\left[\begin{array}{ll}M^{-1} \hat{D} p & M^{-1} q\end{array}\right]\left[\begin{array}{ll}r^{-1} & \\ & r^{-1}\end{array}\right]\left[\begin{array}{c}q^{T} \\ p^{T} \hat{D}\end{array}\right]\right)$.

Hence, we calculate

$$
\begin{aligned}
\Delta & =\operatorname{det}\left[\begin{array}{cc}
-r+q^{T} M^{-1} \hat{D} p & q^{T} M^{-1} q \\
p^{T} \hat{D} M^{-1} \hat{D} p & -r+p^{T} \hat{D} M^{-1} q
\end{array}\right] \\
& =r^{2} \operatorname{det}\left(l_{2}-\left[\begin{array}{ll}
r^{-1} & \\
& r^{-1}
\end{array}\right]\left[\begin{array}{c}
q^{T} \\
p^{T} \hat{D}
\end{array}\right]\left[\begin{array}{ll}
M^{-1} \hat{D} p & \left.\left.M^{-1} q\right]\right) .
\end{array} . . \begin{array}{l}
\end{array}\right] .\right.
\end{aligned}
$$

By Sylvester's determinant theorem, we have
$\Delta=r^{2} \operatorname{det}\left(I_{n-1}-\left[\begin{array}{ll}M^{-1} \hat{D} p & M^{-1} q\end{array}\right]\left[\begin{array}{ll}r^{-1} & \\ & r^{-1}\end{array}\right]\left[\begin{array}{c}q^{T} \\ p^{T} \hat{D}\end{array}\right]\right)$.
Continuing with the above, we finally arrive at

$$
\Delta=r^{2} \operatorname{det}\left(M^{-1}\right) \operatorname{det}\left(\hat{D} S+S^{T} \hat{D}\right)>0
$$

where $S=A / A[\{n\}]$.

We may specify all the feasible positive $D[\{n\}]=x$ values in a diagonal solution $D=\left[\begin{array}{ll}\hat{D} & \\ & x\end{array}\right]$ as follows:

- x is in, but does not exceed, $0 \leq x_{1}<x<x_{2} \leq \infty$, where

$$
x_{1}=\frac{p^{\top} \hat{D} M^{-1} \hat{D} p}{\sqrt{\Delta}-\left(q^{\top} M^{-1} \hat{D} p-r\right)}
$$

and

$$
x_{2}=\frac{\sqrt{\Delta}-\left(q^{T} M^{-1} \hat{D} p-r\right)}{q^{T} M^{-1} q}
$$

with

$$
M=\hat{D} \hat{A}+\hat{A}^{T} \hat{D}
$$

and

$$
\Delta=\left(q^{T} M^{-1} \hat{D} p-r\right)^{2}-\left(q^{T} M^{-1} q\right)\left(p^{T} \hat{D} M^{-1} \hat{D} p\right)
$$

In particular, when $q=0, x_{1}=\frac{p^{T} \hat{D} M^{-1} \hat{D} p}{2 r}$ and $x_{2}=\infty$.

Corollary 1

Let $A \in \mathbb{R}^{n \times n}$ and $\alpha=\langle n\rangle \backslash\{k\}$ for some $1 \leq k \leq n$. Then, A is diagonally stable matrix that has a diagonal solution D with $D[\alpha]=\hat{D}$ and $D[\{k\}]=x$ if and only if the following are true:
(i) $A[\{k\}]>0$.
(ii) $A[\alpha]$ and the Schur complement $A / A[\{k\}]$ share a common diagonal solution \hat{D}.

- The diagonal stability of a matrix A is preserved under simultaneous row and column permutations on A.
- If a matrix A is diagonally stable, then any Schur complement $A / A[\alpha]$ is also diagonally stable for any $\alpha \subseteq\langle n\rangle$.

Corollary 2

Let $A^{(1)}, A^{(2)}, \ldots, A^{(m)} \in \mathbb{R}^{n \times n}$ be each partitioned as $A^{(k)}=\left[\begin{array}{cc}\hat{A}^{(k)} & p^{(k)} \\ \left(q^{(k)}\right)^{T} & r^{(k)}\end{array}\right]$, where $\hat{A}^{(k)} \in \mathbb{R}^{(n-1) \times(n-1)}$. Then $A^{(1)}, A^{(2)}, \ldots, A^{(m)}$ have a common diagonal solution in the form $D=\left[\begin{array}{ll}\hat{D} & \\ & x\end{array}\right]$, with $\hat{D} \in \mathbb{R}^{(n-1) \times(n-1)}$, if and only if the following are true:
(i) $r^{(k)}>0, k=1,2, \ldots, m$.
(ii) $\hat{A}^{(k)}$ and $A^{(k)} / A^{(k)}[\{n\}], k=1,2, \ldots, m$, have \hat{D} as a common diagonal solution.
(iii) $x_{1}<x_{2}$, where $x_{1}=\max _{1 \leq k \leq m} x_{1}^{(k)}, x_{2}=\min _{1 \leq k \leq m} x_{2}^{(k)}$, and where for each k, $0 \leq x_{1}^{(k)}<x_{2}^{(k)} \leq \infty$ are such that

$$
x_{1}^{(k)}=\frac{\left(p^{(k)}\right)^{T} \hat{D}\left(M^{(k)}\right)^{-1} \hat{D} p^{(k)}}{\sqrt{\Delta^{(k)}}-\left(\left(q^{(k)}\right)^{T}\left(M^{(k)}\right)^{-1} \hat{D} p^{(k)}-r^{(k)}\right)}
$$

and

$$
x_{2}^{(k)}=\frac{\sqrt{\Delta^{(k)}}-\left(\left(q^{(k)}\right)^{T}\left(M^{(k)}\right)^{-1} \hat{D} p^{(k)}-r^{(k)}\right)}{\left(q^{(k)}\right)^{T}\left(M^{(k)}\right)^{-1} q^{(k)}}
$$

with

$$
M^{(k)}=\hat{D} \hat{A}^{(k)}+\left(\hat{A}^{(k)}\right)^{T} \hat{D} .
$$

Corollary 3

For $k=1,2, \ldots, m$, let $A^{(k)}=\left[a_{i, j}^{(k)}\right] \in \mathbb{R}^{2 \times 2}$. Then, $A^{(1)}, A^{(2)}, \ldots, A^{(m)}$ have a common diagonal solution $D=\left[\begin{array}{ll}1 & \\ & x\end{array}\right]$ if and only if the following hold:
(i) $A^{(1)}, A^{(2)}, \ldots, A^{(m)}$ are all P-matrices.
(ii) $x_{1}<x_{2}$, where $x_{1}=\max _{1 \leq k \leq m} x_{1}^{(k)}, x_{2}=\min _{1 \leq k \leq m} x_{2}^{(k)}$, and where for each $k, 0 \leq x_{1}^{(k)}<x_{2}^{(k)} \leq \infty$ are such that

$$
x_{1}^{(k)}=\left(\frac{a_{1,2}^{(k)}}{\sqrt{a_{1,1}^{(k)} a_{2,2}^{(k)}}+\sqrt{\operatorname{det}\left(A^{(k)}\right)}}\right)^{2}
$$

and

$$
x_{2}^{(k)}=\left(\frac{\sqrt{a_{1,1}^{(k)} a_{2,2}^{(k)}}+\sqrt{\operatorname{det}\left(A^{(k)}\right)}}{a_{2,1}^{(k)}}\right)^{2}
$$

Example

$$
A_{1}=\left[\begin{array}{rrr}
2 & 1 & -1 \\
-2 & 1 & -3 \\
-4 & 3 & 4
\end{array}\right], A_{2}=\left[\begin{array}{rrr}
4 & 4 & -1 \\
-2 & 4 & 2 \\
0 & 3 & 2
\end{array}\right], A_{3}=\left[\begin{array}{rrr}
1 & -3 & 2 \\
6 & 2 & -1 \\
-6 & -1 & 3
\end{array}\right] .
$$

Example

$$
A_{1}=\left[\begin{array}{rrr}
2 & 1 & -1 \\
-2 & 1 & -3 \\
-4 & 3 & 4
\end{array}\right], A_{2}=\left[\begin{array}{rrr}
4 & 4 & -1 \\
-2 & 4 & 2 \\
0 & 3 & 2
\end{array}\right], A_{3}=\left[\begin{array}{rrr}
1 & -3 & 2 \\
6 & 2 & -1 \\
-6 & -1 & 3
\end{array}\right]
$$

- Taking $\alpha=\langle 2\rangle$, we obtain from Corollary 3 that $A_{1}[\alpha], A_{1} / A_{1}\left[\alpha^{c}\right], A_{2}[\alpha]$, $A_{2} / A_{2}\left[\alpha^{c}\right], A_{3}[\alpha]$, and $A_{3} / A_{3}\left[\alpha^{c}\right]$ have a common diagonal solution $\hat{D}=\left[\begin{array}{ll}1 & \\ & x\end{array}\right]$, where $0.877 \approx \frac{121}{4(2+\sqrt{15})^{2}}<x<\frac{(\sqrt{2}+2 \sqrt{5})^{2}}{36} \approx 0.962$.

Example

$$
A_{1}=\left[\begin{array}{rrr}
2 & 1 & -1 \\
-2 & 1 & -3 \\
-4 & 3 & 4
\end{array}\right], A_{2}=\left[\begin{array}{rrr}
4 & 4 & -1 \\
-2 & 4 & 2 \\
0 & 3 & 2
\end{array}\right], A_{3}=\left[\begin{array}{rrr}
1 & -3 & 2 \\
6 & 2 & -1 \\
-6 & -1 & 3
\end{array}\right]
$$

- Taking $\alpha=\langle 2\rangle$, we obtain from Corollary 3 that $A_{1}[\alpha], A_{1} / A_{1}\left[\alpha^{c}\right], A_{2}[\alpha]$, $A_{2} / A_{2}\left[\alpha^{c}\right], A_{3}[\alpha]$, and $A_{3} / A_{3}\left[\alpha^{c}\right]$ have a common diagonal solution $\hat{D}=\left[\begin{array}{ll}1 & \\ & \\ & x\end{array}\right]$, where $0.877 \approx \frac{121}{4(2+\sqrt{15})^{2}}<x<\frac{(\sqrt{2}+2 \sqrt{5})^{2}}{36} \approx 0.962$.
- If we choose, for example, $x=0.9$ and assume that $D=\left[\begin{array}{ll}\hat{D} & \\ & y\end{array}\right]$, then we can apply Corollary 2 on A_{1}, A_{2}, and A_{3} to determine that

$$
0.604 \approx \frac{1026}{1393+\sqrt{93649}}<y<\frac{1347+6 \sqrt{6389}}{2570} \approx 0.71
$$

Example

$$
A_{1}=\left[\begin{array}{rrr}
2 & 1 & -1 \\
-2 & 1 & -3 \\
-4 & 3 & 4
\end{array}\right], A_{2}=\left[\begin{array}{rrr}
4 & 4 & -1 \\
-2 & 4 & 2 \\
0 & 3 & 2
\end{array}\right], A_{3}=\left[\begin{array}{rrr}
1 & -3 & 2 \\
6 & 2 & -1 \\
-6 & -1 & 3
\end{array}\right]
$$

- Taking $\alpha=\langle 2\rangle$, we obtain from Corollary 3 that $A_{1}[\alpha], A_{1} / A_{1}\left[\alpha^{c}\right], A_{2}[\alpha]$, $A_{2} / A_{2}\left[\alpha^{c}\right], A_{3}[\alpha]$, and $A_{3} / A_{3}\left[\alpha^{c}\right]$ have a common diagonal solution $\hat{D}=\left[\begin{array}{ll}1 & \\ & x\end{array}\right]$, where $0.877 \approx \frac{121}{4(2+\sqrt{15})^{2}}<x<\frac{(\sqrt{2}+2 \sqrt{5})^{2}}{36} \approx 0.962$.
- If we choose, for example, $x=0.9$ and assume that $D=\left[\begin{array}{ll}\hat{D} & \\ & y\end{array}\right]$, then we can apply Corollary 2 on A_{1}, A_{2}, and A_{3} to determine that

$$
0.604 \approx \frac{1026}{1393+\sqrt{93649}}<y<\frac{1347+6 \sqrt{6389}}{2570} \approx 0.71
$$

- Hence, given any y in the above range, A_{1}, A_{2}, and A_{3} share a common diagonal solution in the form $D=\left[\begin{array}{llll}1 & & \\ & 0.9 & \\ & & y\end{array}\right]$.

Figure 1: Change in the smallest eigenvalue of $Q_{i}=D A_{i}+A_{i}^{T} D, \mathrm{i}=1,2,3$, depending on y , the last diagonal entry of D .

A New Characterization for Common Diagonal Solutions

Theorem (Barker, Berman and Plemmons, 1978)
A matrix $A \in \mathbb{R}^{n \times n}$ is diagonally stable if and only if for every nonzero $X \succeq 0, A X$ has a positive diagonal entry.

A New Characterization for Common Diagonal Solutions

Theorem (Barker, Berman and Plemmons, 1978)

A matrix $A \in \mathbb{R}^{n \times n}$ is diagonally stable if and only if for every nonzero $X \succeq 0, A X$ has a positive diagonal entry.

Theorem (Berman, Goldberg and Shorten, 2014)
Let $\mathcal{A}=\left\{A^{(1)}, A^{(2)}, \ldots, A^{(m)}\right\} \subset \mathbb{R}^{n \times n}$. Then, \mathcal{A} has a common diagonal solution if and only if for any $X^{(k)} \succeq 0, k=1,2, \ldots, m$, not all of them zero, $\sum_{k=1}^{m} A^{(k)} X^{(k)}$ has a positive diagonal entry.

Theorem (Kraaijevanger, 1991)

The following statements are equivalent for a matrix $A \in \mathbb{R}^{n \times n}$:
(i) A is diagonally stable.
(ii) $A \circ S$ is a P-matrix for all $S \succeq 0$ with diagonal entries all being 1 .
(iii) A has positive diagonal entries and $\operatorname{det}(A \circ S)>0$ for all $S \succeq 0$ with diagonal entries all being 1 .

- Hadamard product of two matrices $A=\left[a_{i, j}\right] \in \mathbb{R}^{n \times n}$ and $B=\left[b_{i, j}\right] \in \mathbb{R}^{n \times n}$ is the matrix $A \circ B=\left[a_{i, j} b_{i, j}\right] \in \mathbb{R}^{n \times n}$.
- A matrix A is called a P-matrix (P_{0}-matrix) if all its principal minors are positive (nonnegative).

Theorem (Kraaijevanger, 1991)

The following statements are equivalent for a matrix $A \in \mathbb{R}^{n \times n}$:
(i) A is diagonally stable.
(ii) $A \circ S$ is a P-matrix for all $S \succeq 0$ with diagonal entries all being 1 .
(iii) A has positive diagonal entries and $\operatorname{det}(A \circ S)>0$ for all $S \succeq 0$ with diagonal entries all being 1 .

- Hadamard product of two matrices $A=\left[a_{i, j}\right] \in \mathbb{R}^{n \times n}$ and $B=\left[b_{i, j}\right] \in \mathbb{R}^{n \times n}$ is the matrix $A \circ B=\left[a_{i, j} b_{i, j}\right] \in \mathbb{R}^{n \times n}$.
- A matrix A is called a P-matrix (P_{0}-matrix) if all its principal minors are positive (nonnegative).
- We shall extend Kraaijevanger's result to a new characterization for a set of matrices to share a common diagonal solution.
- Accordingly, we shall extend P-matrices by introducing a new notion called \mathcal{P}-sets.

Lemma (Fiedler and Ptak, 1962)

Let $A \in \mathbb{R}^{n \times n}$. Then, A is a P-matrix if and only if for any nonzero $x \in \mathbb{R}^{n}, x_{i}(A x)_{i}>0$ for some index i.

Lemma (Fiedler and Ptak, 1962)

Let $A \in \mathbb{R}^{n \times n}$. Then, A is a P-matrix if and only if for any nonzero $x \in \mathbb{R}^{n}, x_{i}(A x)_{i}>0$ for some index i.

Definition

Given $\mathcal{A}=\left\{A^{(1)}, A^{(2)}, \ldots, A^{(m)}\right\} \subset \mathbb{R}^{n \times n}$, we define \mathcal{A} as a \mathcal{P}-set if for any $x^{(k)} \in \mathbb{R}^{n}, k=1,2, \ldots, m$, not all of them zero, there exists some index i such that $\sum_{k=1}^{m} x_{i}^{(k)}\left(A^{(k)} x^{(k)}\right)_{i}>0$.

Lemma (Fiedler and Ptak, 1962)

Let $A \in \mathbb{R}^{n \times n}$. Then, A is a P-matrix if and only if for any nonzero $x \in \mathbb{R}^{n}, x_{i}(A x)_{i}>0$ for some index i.

Definition

Given $\mathcal{A}=\left\{A^{(1)}, A^{(2)}, \ldots, A^{(m)}\right\} \subset \mathbb{R}^{n \times n}$, we define \mathcal{A} as a \mathcal{P}-set if for any $x^{(k)} \in \mathbb{R}^{n}, k=1,2, \ldots, m$, not all of them zero, there exists some index i such that $\sum_{k=1}^{m} x_{i}^{(k)}\left(A^{(k)} x^{(k)}\right)_{i}>0$.

Theorem

Let $\mathcal{A}=\left\{A^{(1)}, A^{(2)}, \ldots, A^{(m)}\right\} \subset \mathbb{R}^{n \times n}$. Then, \mathcal{A} is a \mathcal{P}-set if and only if for any $x^{(k)} \in \mathbb{R}^{n}, k=1,2, \ldots, m$, not all of them zero,
$\sum_{k=1}^{m} A^{(k)} x^{(k)}\left(x^{(k)}\right)^{T}$ has a positive diagonal entry.

- If \mathcal{A} has a common diagonal solution, then it is a \mathcal{P}-set.

Main Theorem-1

Given $\mathcal{A}=\left\{A^{(1)}, A^{(2)}, \ldots, A^{(m)}\right\} \subset \mathbb{R}^{n \times n}$, the following are equivalent:
(i) \mathcal{A} has a common diagonal solution.
(ii) $\left\{A^{(1)} \circ S^{(1)}, A^{(2)} \circ S^{(2)}, \ldots, A^{(m)} \circ S^{(m)}\right\}$ has a common diagonal solution for all $S^{(k)} \succeq 0, k=1,2, \ldots, m$, each with diagonal entries being all 1.
(iii) $\left\{A^{(1)} \circ S^{(1)}, A^{(2)} \circ S^{(2)}, \ldots, A^{(m)} \circ S^{(m)}\right\}$ is a \mathcal{P}-set for all $S^{(k)} \succeq 0, k=1,2, \ldots, m$, each with diagonal entries being all 1 .

Outline of the proof:

(i) \Rightarrow (ii): Let $A^{(k)} D+D\left(A^{(k)}\right)^{T} \succ 0$ for all k. Then

$$
\begin{equation*}
\left(A^{(k)} \circ S^{(k)}\right) D+D\left(A^{(k)} \circ S^{(k)}\right)^{T}=\left(A^{(k)} D+D A^{(k)}\right) \circ S^{(k)} \succ 0 \tag{7}
\end{equation*}
$$

(ii) \Rightarrow (iii): \mathcal{P}-set property is a necessary condition of simultaneous diagonal stability.
(iii) \Rightarrow (i): Any $X^{(k)} \succeq 0$ can be expressed in the form $X^{(k)}=D^{(k)} S^{(k)} D^{(k)}$ for some
 $D_{i, i}^{(k)}=\sqrt{X_{i, i}^{(k)}}, i=1,2, \ldots, n$. Let $y^{(k)} \in \mathbb{R}^{n}$ be such that $y_{i}^{(k)}=D_{i, i}^{(k)}$ for all i. Then,

$$
\begin{equation*}
\left[\sum_{k=1}^{m}\left(A^{(k)} \circ S^{(k)}\right) y^{(k)}\left(y^{(k)}\right)^{T}\right]_{j, j}=\left[\sum_{k=1}^{m} A^{(k)} X^{(k)}\right]_{j, j} \tag{8}
\end{equation*}
$$

Theorem

Assume $\mathcal{A}=\left\{A^{(1)}, A^{(2)}, \ldots, A^{(m)}\right\} \subset \mathbb{R}^{n \times n}$. Then, \mathcal{A} is a \mathcal{P}-set if and only if m $\sum_{k=1} A^{(k)} \circ y^{(k)}\left(y^{(k)}\right)^{T}$ is a P-matrix for any $y^{(k)} \in \mathbb{R}^{n}, k=1,2, \ldots, m$, such that for each index $i, y_{i}^{(k)} \neq 0$ for some $1 \leq k \leq m$.

Theorem

Assume $\mathcal{A}=\left\{A^{(1)}, A^{(2)}, \ldots, A^{(m)}\right\} \subset \mathbb{R}^{n \times n}$. Then, \mathcal{A} is a \mathcal{P}-set if and only if $\sum_{k=1}^{m} A^{(k)} \circ y^{(k)}\left(y^{(k)}\right)^{T}$ is a P-matrix for any $y^{(k)} \in \mathbb{R}^{n}, k=1,2, \ldots, m$, such that for each index $i, y_{i}^{(k)} \neq 0$ for some $1 \leq k \leq m$.

Main Theorem-2

Given $\mathcal{A}=\left\{A^{(1)}, A^{(2)}, \ldots, A^{(m)}\right\} \subset \mathbb{R}^{n \times n}$, the following are equivalent:
(i) \mathcal{A} has a common diagonal solution.
(ii) $\sum_{k=1}^{m} A^{(k)} \circ S^{(k)}$ is a P-matrix for all $S^{(k)} \succeq 0, k=1,2, \ldots, m$, provided that for any index $1 \leq i \leq n, S_{i, i}^{(k)}=1$ for some $1 \leq k \leq m$.
(iii) $A_{i, i}^{(k)}>0$ for $i=1,2, \ldots, n$ and $k=1,2, \ldots, m$, and $\operatorname{det}\left(\sum_{k=1}^{m} A^{(k)} \circ S^{(k)}\right)>0$ for all $S^{(k)} \succeq 0, k=1,2, \ldots, m$, provided that for any index $1 \leq i \leq n, S_{i, i}^{(k)}=1$ for some $1 \leq k \leq m$.

α-Stability

- Consider a partition $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}$ of $\langle n\rangle$, where $\langle n\rangle=\alpha_{1} \cup \cdots \cup \alpha_{p}$ with these α_{k} being nonempty and mutually exclusive. When $p=1$, we simply write $\alpha=\langle n\rangle$.
- A block diagonal matrix with diagonal blocks indexed by $\alpha_{1}, \ldots, \alpha_{p}$ is said to be α-diagonal.
- A diagonal matrix $D \in \mathbb{R}^{n \times n}$ is called α-scalar if, for each $1 \leq k \leq p$, $D\left[\alpha_{k}\right]$ is a scalar multiple of the identity matrix of the same size.
α-diagonal
α-scalar
$A=\left[\begin{array}{llll}A_{1} & & & \\ & A_{2} & & \\ & & \ddots & \\ & & & A_{p}\end{array}\right]$

$A_{k} \in \mathbb{R}^{n_{k} \times n_{k}}$ for $n_{k}=\left|\alpha_{k}\right|$
$I_{k} \in \mathbb{R}^{n_{k} \times n_{k}}$ for $n_{k}=\left|\alpha_{k}\right|$

Definition (Hershkowitz and Mashal, 1998)

Let $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}$ be a of $\langle n\rangle$. A matrix $A \in \mathbb{R}^{n \times n}$ is said to be $H(\alpha)$-stable (-semistable) if $A H$ is stable (semistable) for any positive definite α-diagonal matrix H.

- In particular, $H(\langle n\rangle)$-stability is also called H-stability.

Definition (Hershkowitz and Mashal, 1998)

Let $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}$ be a of $\langle n\rangle$. A matrix $A \in \mathbb{R}^{n \times n}$ is said to be $H(\alpha)$-stable (-semistable) if $A H$ is stable (semistable) for any positive definite α-diagonal matrix H.

- In particular, $H(\langle n\rangle)$-stability is also called H-stability.

Definition (Hershkowitz and Mashal, 1998)

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be Lyapunov α-scalar stable (semistable) if there exists some positive definite α-scalar matrix D such that

$$
A D+D A^{T} \succ 0 \quad\left(A D+D A^{T} \succeq 0\right)
$$

- We shall abbreviate Lyapunov α-scalar stability as $L(\alpha)$-stability and use the term L-stability when $\alpha=\langle n\rangle$.

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be additive D-stable (-semistable) if $A+D$ is stable (semistable) for any nonnegative diagonal matrix D.

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be additive D-stable (-semistable) if $A+D$ is stable (semistable) for any nonnegative diagonal matrix D.

- Additive D-stability arises in diffusion models of biological systems after linearization at the equilibrium, and guarantees the asymptotic stability of the equilibrium.
- Additive D-stability has also found applications in neural networks, mathematical economics and mathematical ecology.

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be additive D-stable (-semistable) if $A+D$ is stable (semistable) for any nonnegative diagonal matrix D.

- Additive D-stability arises in diffusion models of biological systems after linearization at the equilibrium, and guarantees the asymptotic stability of the equilibrium.
- Additive D-stability has also found applications in neural networks, mathematical economics and mathematical ecology.

Theorem

Let $A \in \mathbb{R}^{n \times n}$. Then, A is additive D-stable if A is stable and $L(\alpha)$-semistable for some partition α of $\langle n\rangle$,

Definition

Let α be a partition of $\langle n\rangle$. Then, a matrix $A \in \mathbb{R}^{n \times n}$ is said to be additive $H(\alpha)$-stable (-semistable) if $A+H$ is stable (semistable) for any positive semidefinite α-diagonal matrix H.

- When $\alpha=\{\{1\}, \ldots,\{n\}\}$, additive $H(\alpha)$-stability is same as additive D-stability. When $\alpha=\langle n\rangle$, we also use the term additive H-stability in place of $H(\langle n\rangle)$-stability.

Definition

Let α be a partition of $\langle n\rangle$. Then, a matrix $A \in \mathbb{R}^{n \times n}$ is said to be additive $H(\alpha)$-stable (-semistable) if $A+H$ is stable (semistable) for any positive semidefinite α-diagonal matrix H.

- When $\alpha=\{\{1\}, \ldots,\{n\}\}$, additive $H(\alpha)$-stability is same as additive D-stability. When $\alpha=\langle n\rangle$, we also use the term additive H-stability in place of $H(\langle n\rangle)$-stability.
- Additive $H(\alpha)$-stability can be interpreted as a criterion for the equilibrium of the following general diffusion problem to be asymptotically stable:

$$
\frac{\partial u}{\partial t}=\sum_{i, j=1}^{n} h_{i, j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+f(u)
$$

where $H=\left[h_{i, j}\right] \succeq 0$. Additive $H(\alpha)$-stability arises if, in addition, H has an α-diagonal structure.

Lemma (Fiedler and Ptak, 1966)

Let $A \in \mathbb{R}^{n \times n}$. Then, A is a P_{0}-matrix if and only if for any nonzero $x \in \mathbb{R}^{n}$, there exists an index i such that $x_{i} \neq 0$ and $x_{i}(A x)_{i} \geq 0$.

Lemma (Fiedler and Ptak, 1966)

Let $A \in \mathbb{R}^{n \times n}$. Then, A is a P_{0}-matrix if and only if for any nonzero $x \in \mathbb{R}^{n}$, there exists an index i such that $x_{i} \neq 0$ and $x_{i}(A x)_{i} \geq 0$.

Definition

Let $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}$ be a partition of $\langle n\rangle$. A nonsingular matrix $A \in \mathbb{R}^{n \times n}$ is said to be a $P_{0}(\alpha)$-matrix if for any nonzero $x \in \mathbb{R}^{n}$, there exists some $1 \leq k \leq p$ such that $(\boldsymbol{A x})\left[\alpha_{k}\right] \neq 0$ and $x\left[\alpha_{k}\right]^{T}(A x)\left[\alpha_{k}\right] \geq 0$.

- For given $\beta \subseteq\langle n\rangle, x[\beta]$ is the subvector of x indexed by β.

Lemma (Fiedler and Ptak, 1966)

Let $A \in \mathbb{R}^{n \times n}$. Then, A is a P_{0}-matrix if and only if for any nonzero $x \in \mathbb{R}^{n}$, there exists an index i such that $x_{i} \neq 0$ and $x_{i}(A x)_{i} \geq 0$.

Definition

Let $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}$ be a partition of $\langle n\rangle$. A nonsingular matrix $A \in \mathbb{R}^{n \times n}$ is said to be a $P_{0}(\alpha)$-matrix if for any nonzero $x \in \mathbb{R}^{n}$, there exists some $1 \leq k \leq p$ such that $(A x)\left[\alpha_{k}\right] \neq 0$ and $x\left[\alpha_{k}\right]^{T}(A x)\left[\alpha_{k}\right] \geq 0$.

- For given $\beta \subseteq\langle n\rangle, x[\beta]$ is the subvector of x indexed by β.
- When $\alpha=\{\{1\}, \ldots,\{n\}\}$, a $P_{0}(\alpha)$-matrix is a nonsingular P_{0}-matrix. When $\alpha=\langle n\rangle$, a $P_{0}(\alpha)$-matrix is a nonsingular positive semidefinite, but not necessarily symmetric, matrix.
- The notion of $P_{0}(\alpha)$-matrices bridges such general positive semidefinite matrices and nonsingular P_{0}-matrices.

Main Results

Regular matrix stability

A is diagonally stable.
\Downarrow
A is additive D-stable.

A is nonsingular P_{0}-matrix. I
$A+D$ is nonsingular for any nonnegative diagonal matrix D
α-stability

- A one way implication means that the converse does not hold in general.

Main Results

A is H-stable.
\Downarrow
A is additive H-stable. §
A is stable and $A+b b^{T}$ is nonsingular for any $b \in \mathbb{R}^{n}$.

I
A is stable and $A+A^{T} \succeq 0$.
§
A is stable and a $P_{0}(\langle n\rangle)$-matrix.

- A one way implication means that the converse does not hold in general.
- $A \in \mathbb{R}^{n \times n}$ is a nonsingular P_{0}-matrix if and only if $A+D$ is nonsingular for any nonnegative diagonal matrix D if and only if A is nonsingular and $A+D$ is nonsingular for any positive diagonal matrix D.

Conjecture 1

Let α be a partition of $\langle n\rangle$ and $A \in \mathbb{R}^{n \times n}$. Then, the following are equivalent:
(i) A is a $P_{0}(\alpha)$-matrix.
(ii) $A+H$ is nonsingular for every positive semidefinite α-diagonal matrix H.
(iii) A is nonsingular and $A+H$ is nonsingular for every positive definite α-diagonal matrix H.

Conjecture 2

Let α be a partition of $\langle n\rangle$ and let $A \in \mathbb{R}^{n \times n}$. If A is $H(\alpha)$-stable, then A is a $P_{0}(\alpha)$-matrix.

On-going work

Theorem (Hershkowitz and Mashal, 1998)

Let $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ be a partition of $\langle n\rangle$. Then, the following statements are equivalent for a matrix A :
(i) A is $L(\alpha)$-stable.
(ii) For every nonzero $X \succeq 0$, there exists some $1 \leq k \leq r$ such that $\operatorname{tr}\left((A X)\left[\alpha_{k}\right]\right)>0$.

Theorem (Hershkowitz and Mashal, 1998)

Let $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ be a partition of $\langle n\rangle$. Then, the following statements are equivalent for a matrix A :
(i) A is $L(\alpha)$-stable.
(ii) $A \circ S$ is a $P(\alpha)$-matrix for all $S \succeq 0$ with diagonal entries all being 1 .

- $A \in \mathbb{R}^{n \times n}$ is said to be a $P(\alpha)$-matrix if for any nonzero $x \in \mathbb{R}^{n}$, there exists some $1 \leq k \leq r$ such that $x\left[\alpha_{k}\right]^{T}(A x)\left[\alpha_{k}\right]>0$.

Definition

Let $\mathcal{A}=\left\{A^{(1)}, A^{(2)}, \ldots, A^{(m)}\right\} \subset \mathbb{R}^{n \times n}$ and α be a partition of $\langle n\rangle$. If there exists some positive definite α-scalar matrix D such that

$$
\begin{equation*}
D A^{(j)}+\left(A^{(j)}\right)^{T} D \succ 0, j=1,2, \ldots, m, \tag{9}
\end{equation*}
$$

then D is called a common $L(\alpha)$-solution for the matrix set \mathcal{A}. The existence of such a D is interpreted as the simultaneous $L(\alpha)$-stability of all the matrices in \mathcal{A}.

Definition

Let $\mathcal{A}=\left\{A^{(1)}, A^{(2)}, \ldots, A^{(m)}\right\} \subset \mathbb{R}^{n \times n}$ and $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ be a partition of $\langle n\rangle$. Then we define \mathcal{A} as a $P(\alpha)$-set if for any vector $x^{(j)} \in \mathbb{R}^{n}, j=1,2, \ldots, m$, not all of them zero, there exists $1 \leq k \leq r$ such that

$$
\sum_{j=1}^{m} x^{(j)}\left[\alpha_{k}\right]^{T}\left(A^{(j)} x^{(j)}\right)\left[\alpha_{k}\right]>0
$$

Theorem

Let $\mathcal{A}=\left\{A^{(1)}, A^{(2)}, \ldots, A^{(m)}\right\} \subset \mathbb{R}^{n \times n}$ and $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ be a partition of $\langle n\rangle$. Then, \mathcal{A} has a common $L(\alpha)$-solution if and only if for any $X^{(j)} \succeq 0$, $j=1, \ldots, m$, not all of them zero, there exist $1 \leq k \leq r$ such that

$$
\operatorname{tr}\left(\sum_{j=1}^{m}\left(A^{(j)} X^{(j)}\right)\left[\alpha_{k}\right]\right)>0
$$

Theorem

Let $\mathcal{A}=\left\{A^{(1)}, A^{(2)}, \ldots, A^{(m)}\right\} \subset \mathbb{R}^{n \times n}$ and $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ be a partition of $\langle n\rangle$. Then, \mathcal{A} has a common $L(\alpha)$-solution if and only if for any $X^{(j)} \succeq 0$, $j=1, \ldots, m$, not all of them zero, there exist $1 \leq k \leq r$ such that

$$
\operatorname{tr}\left(\sum_{j=1}^{m}\left(A^{(j)} X^{(j)}\right)\left[\alpha_{k}\right]\right)>0
$$

Theorem

Let $\mathcal{A}=\left\{A^{(1)}, A^{(2)}, \ldots, A^{(m)}\right\} \subset \mathbb{R}^{n \times n}$ and $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ be a partition of $\langle n\rangle$. Then, the following are equivalent:
(i) \mathcal{A} has a common $L(\alpha)$-solution.
(ii) $\left\{A^{(1)} \circ S^{(1)}, A^{(2)} \circ S^{(2)}, \ldots, A^{(m)} \circ S^{(m)}\right\}$ is a $P(\alpha)$-set for all $S^{(j)} \succeq 0$, $j=1,2, \ldots, m$, with all diagonal entries are equal to 1 .
(iii) $\sum_{j=1}^{m} A^{(j)} \circ S^{(j)}$ is a $P(\alpha)$-matrix for all $S^{(j)} \succeq 0, j=1,2, \ldots, m$, provided that for any index $1 \leq i \leq n, S_{i, i}^{(j)}=1$ for some $1 \leq j \leq m$.

Future works

- Explicit algebraic conditions for the diagonal stability and the simultaneous diagonal stability of higher order matrices.
- Extension of simultaneous diagonal stability problem to the simultaneous $L(\alpha)$-stability case.
- Characterization of $H(\alpha)$-stability and additive $H(\alpha)$-stability.
- Stability properties of structured matrices.

Future works

- Sinc matrix $I^{(-1)}=S+\frac{1}{2} e e^{T}$, where $e \in \mathbb{R}^{n}$ is the vector of all ones and

$$
S=\left[\begin{array}{ccccc}
s_{0} & -s_{1} & -s_{2} & \cdots & -s_{n-1} \\
s_{1} & s_{0} & -s_{1} & \cdots & -s_{n-2} \\
s_{2} & s_{1} & s_{0} & \cdots & -s_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
s_{n-1} & s_{n-2} & s_{n-3} & \cdots & s_{0}
\end{array}\right]
$$

and $s_{k}=\int_{0}^{k} \operatorname{sinc}(x) d x$, where $\operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x}, \forall x \neq 0$, while $\operatorname{sinc}(0)=1$.

- S is a skew-symmetric and Toeplitz matrix.
- A recent result confirmed that the Sinc matrix $I^{(-1)}$ is stable, but it is still unknown yet as to whether this matrix has D-stability, a problem key to various applications of Sinc methods.

References

- M. Gumus, J. Xu, Some new results related to α-stability, Linear and Multilinear Algebra, DOI 10.1080/03081087.2016.1183562
- M. Gumus, J. Xu, On common diagonal Lyapunov solutions, Linear Algebra and Its Applications, 507: 32-50, 2016.
- A new characterization of simultaneous Lyapunov diagonal stability via Hadamard products with Dr. Jianhong Xu, submitted to Linear and Multilinear Algebra.
- A. Berman, F. Goldberg, R. Shorten, Comments on Lyapunov α-stability with some extensions, Contemporary Math., 619 (2014) 19-29.
- R. Horn, C. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, UK, 1991.
- R. Redheffer, Volterra multipliers II, SIAM Journal on Algebraic and Discrete Methods, 6(4): 612-623, 1985.
- R. Shorten and K. Narendra, On a theorem of Redheffer concerning diagonal stability, Linear Algebra and Its Applications, 431: 2317-2329, 2009.

THANK YOU

