Some New Results on Lyapunov-Type Diagonal Stability

Mehmet Gumus

(Joint work with Dr. Jianhong Xu)

Department of Mathematics Southern Illinois University Carbondale

12/01/2016

Outline

Background and Preliminaries

2 A Necessary and Sufficient Condition Based on Schur Complement

- Redheffer's theorem and its extensions
- \bullet Algebraic conditions for a set of 2×2 matrices to share a common diagonal solution

3 A New Characterization for Common Diagonal Solutions

- \mathcal{P} -sets
- An extension to the characterization of diagonal stability involving Hadamard product

4 α -Stability

- Additive $H(\alpha)$ -stability and $P_0(\alpha)$ -matrices
- On-going work: Common α -scalar Lyapunov solutions

5 Future Works

Background and Preliminaries

• Consider the first-order linear constant coefficient system of *n* ordinary differential equations:

$$\frac{dx}{dt} = A[x(t) - \hat{x}] \tag{1}$$

where $A \in \mathbb{R}^{n \times n}$ and $x(t), \hat{x} \in \mathbb{R}^{n}$.

Background and Preliminaries

• Consider the first-order linear constant coefficient system of *n* ordinary differential equations:

$$\frac{dx}{dt} = A[x(t) - \hat{x}] \tag{1}$$

where $A \in \mathbb{R}^{n \times n}$ and $x(t), \hat{x} \in \mathbb{R}^{n}$.

• \hat{x} is called an equilibrium for this system. If x(t) converges to \hat{x} as $t \to \infty$ for every choice of the initial data x(0), the equilibrium \hat{x} is said to be asymptotically stable.

Background and Preliminaries

• Consider the first-order linear constant coefficient system of *n* ordinary differential equations:

$$\frac{dx}{dt} = A[x(t) - \hat{x}] \tag{1}$$

where $A \in \mathbb{R}^{n \times n}$ and $x(t), \hat{x} \in \mathbb{R}^{n}$.

- \hat{x} is called an equilibrium for this system. If x(t) converges to \hat{x} as $t \to \infty$ for every choice of the initial data x(0), the equilibrium \hat{x} is said to be asymptotically stable.
- The equilibrium is asymptotically stable if and only if each eigenvalue of A has a negative real part. A matrix A satisfying this condition is called a (Hurwitz) stable matrix.

Let $A \in \mathbb{R}^{n \times n}$ be symmetric matrix. Then A is said to be positive semidefinite (positive definite) if $x^*Ax \ge 0$ ($x^*Ax > 0$) for all nonzero $x \in \mathbb{R}^n$.

- A symmetric matrix A ∈ ℝ^{n×n} is positive semidefinite (positive definite) if and only if all of its eigenvalues are nonnegative (positive).
- A symmetric matrix A ∈ ℝ^{n×n} is positive semidefinite (positive definite) if and only if all its principal minors are nonnegative (positive).
 - The determinant of a principal submatrix is called a principal minor.
- We shall denote A ≥ 0 (A > 0) when A is positive semidefinite (positive definite).

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be (positive) stable if each eigenvalue of A has a positive real part.

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be (positive) stable if each eigenvalue of A has a positive real part.

Lyapunov's Theorem

A matrix $A \in \mathbb{R}^{n \times n}$ is stable if and only if there exists a $P \succ 0$ such that

$$PA + A^T P \succ 0. \tag{2}$$

Then, P is called a Lyapunov solution of (2).

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be (Lyapunov) diagonally stable if there exists a positive diagonal matrix D such that

$$DA + A^T D \succ 0.$$
 (3)

Then, D is called a diagonal (Lyapunov) solution of (3).

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be (Lyapunov) diagonally stable if there exists a positive diagonal matrix D such that

$$DA + A^T D \succ 0.$$
 (3)

Then, D is called a diagonal (Lyapunov) solution of (3).

Definition

Let $A^{(1)}, A^{(2)}, \ldots, A^{(m)} \in \mathbb{R}^{n \times n}$. If there exists a positive diagonal matrix D such that

$$DA^{(k)} + (A^{(k)})^T D \succ 0, \ k = 1, 2, \dots, m,$$
 (4)

then *D* is called a common diagonal (Lyapunov) solution of (4). The existence of such a *D* is interpreted as the simultaneous diagonal stability of $A^{(1)}, A^{(2)}, \ldots, A^{(m)}$.

• Let $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$. The matrix A is stable, having the eigenvalues $1 \pm i$.

• Choosing positive diagonal matrix $D = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, we have

$$DA + A^{T}D = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & -1 \\ -1 & 2 \end{bmatrix} \succ 0,$$

thus A is a diagonally stable matrix.

• Let $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$. The matrix A is stable, having the eigenvalues $1 \pm i$.

• Choosing positive diagonal matrix $D = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, we have

$$DA + A^{T}D = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & -1 \\ -1 & 2 \end{bmatrix} \succ 0,$$

thus A is a diagonally stable matrix.

• Let $B = \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix}$. The matrix B is stable, having the eigenvalues $1 \pm i$. However, B is not a diagonally stable matrix.

$$DB + B^{T}D = \begin{bmatrix} d_{1} \\ d_{2} \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} d_{1} \\ d_{2} \end{bmatrix}$$
$$= \begin{bmatrix} 4d_{1} & 2d_{2} - d_{1} \\ 2d_{2} - d_{1} & 0 \end{bmatrix} \not\geq 0.$$

Applications of diagonal stability

- Dynamic models for biochemical reactions
- Systems theory
- Population dynamics
- Communication networks
- Mathematical economics

Applications of simultaneous diagonal stability

- Large-scale dynamic systems
- Interconnected time-varying and switched systems

A Necessary and Sufficient Condition Based on Schur Complement

- We shall denote (k) = {1, 2, ..., k}. For A ∈ ℝ^{n×n}, let A[α, β] be the submatrix of A whose rows and columns are indexed by α, β ⊆ (n), respectively, and let A[α] = A[α, α].
- The Schur complement of *A*[*α*] in *A* is defined as

$$A/A[\alpha] = A[\alpha^{c}] - A[\alpha^{c}, \alpha]A[\alpha]^{-1}A[\alpha, \alpha^{c}],$$
(5)

where $\alpha^{c} = \langle n \rangle \backslash \alpha$, provided that $A[\alpha]$ is nonsingular.

A Necessary and Sufficient Condition Based on Schur Complement

We shall denote (k) = {1, 2, ..., k}. For A ∈ ℝ^{n×n}, let A[α, β] be the submatrix of A whose rows and columns are indexed by α, β ⊆ (n), respectively, and let A[α] = A[α, α].

The Schur complement of A[α] in A is defined as

$$A/A[\alpha] = A[\alpha^{c}] - A[\alpha^{c}, \alpha]A[\alpha]^{-1}A[\alpha, \alpha^{c}],$$
(5)

where $\alpha^{c} = \langle n \rangle \backslash \alpha$, provided that $A[\alpha]$ is nonsingular.

• Consider, for example, the partitioned matrix $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$, where $A[\alpha] = B$, $A[\alpha^c] = E$, $A[\alpha^c, \alpha] = D$, and $A[\alpha, \alpha^c] = C$. Then, $A/A[\alpha] = E - DB^{-1}C$.

Theorem (Redheffer, 1985)

Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix with $A[\{n\}] > 0$ and $\alpha = \langle n - 1 \rangle$. Then, A is diagonally stable if and only if $A[\alpha]$ and $A^{-1}[\alpha]$ have a common diagonal solution.

Theorem (Redheffer, 1985)

Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix with $A[\{n\}] > 0$ and $\alpha = \langle n - 1 \rangle$. Then, A is diagonally stable if and only if $A[\alpha]$ and $A^{-1}[\alpha]$ have a common diagonal solution.

Theorem (Shorten and Narendra, 2009)
Let
$$A \in \mathbb{R}^{n \times n}$$
 be partitioned as $A = \begin{bmatrix} \hat{A} & p \\ q^T & r \end{bmatrix}$, where $\hat{A} \in \mathbb{R}^{(n-1) \times (n-1)}$
and $r > 0$. Then, A is diagonally stable if and only if \hat{A} and $\hat{A} - \frac{pq^T}{r}$ have a common diagonal solution.

•
$$\left(\hat{A} - \frac{pq^{T}}{r}\right)^{-1} = A^{-1}[\langle n-1\rangle]$$

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be partitioned as $A = \begin{bmatrix} \hat{A} & p \\ q^T & r \end{bmatrix}$, where $\hat{A} \in \mathbb{R}^{(n-1) \times (n-1)}$. Then, A is diagonally stable with a diagonal solution $D = \begin{bmatrix} \hat{D} \\ & \chi \end{bmatrix}$, where $\hat{D} \in \mathbb{R}^{(n-1) \times (n-1)}$, if and only if the following are true: (i) r > 0. (ii) \hat{A} and the Schur complement $A/A[\{n\}] = \hat{A} - \frac{pq^T}{r}$ share a common diagonal solution \hat{D} .

Lemma (Horn and Johnson, 1985)

Suppose that $B \in \mathbb{R}^{n \times n}$ is a symmetric matrix and $\alpha \subset \langle n \rangle$. Then, $B \succ 0$ if and only if

 $B[\alpha] \succ 0$

and

 $B/B[\alpha] \succ 0.$

Slyvester's Determinant Theorem

Let $U \in \mathbb{R}^{n \times m}$ and $V \in \mathbb{R}^{m \times n}$. Then

$$\det(I_n + UV) = \det(I_m + VU),$$

where I_k is the $k \times k$ identity matrix.

<u>Proof of Theorem</u>: We need to justify that, for some x > 0,

$$B = DA + A^{\mathsf{T}}D = \begin{bmatrix} \hat{D}\hat{A} + \hat{A}^{\mathsf{T}}\hat{D} & \hat{D}p + xq \\ p^{\mathsf{T}}\hat{D} + xq^{\mathsf{T}} & 2xr \end{bmatrix} \succ 0.$$

Proof of Theorem: We need to justify that, for some x > 0,

$$B = DA + A^{T}D = \begin{bmatrix} \hat{D}\hat{A} + \hat{A}^{T}\hat{D} & \hat{D}p + xq \\ p^{T}\hat{D} + xq^{T} & 2xr \end{bmatrix} \succ 0.$$

This, by lemma with $\alpha = \langle n - 1 \rangle$ and $M = B[\alpha] = \hat{D}\hat{A} + \hat{A}^T\hat{D} \succ 0$, is equivalent to that for some x > 0,

$$f(x) = B/B[\alpha] = 2xr - (p^T\hat{D} + xq^T)M^{-1}(\hat{D}p + xq) > 0.$$
 (6)

Proof of Theorem: We need to justify that, for some x > 0,

$$B = DA + A^{T}D = \begin{bmatrix} \hat{D}\hat{A} + \hat{A}^{T}\hat{D} & \hat{D}p + xq \\ p^{T}\hat{D} + xq^{T} & 2xr \end{bmatrix} \succ 0.$$

This, by lemma with $\alpha = \langle n - 1 \rangle$ and $M = B[\alpha] = \hat{D}\hat{A} + \hat{A}^T\hat{D} \succ 0$, is equivalent to that for some x > 0,

$$f(x) = B/B[\alpha] = 2xr - (p^T \hat{D} + xq^T)M^{-1}(\hat{D}p + xq) > 0.$$
 (6)

From (6), $f(x) \le 0$ whenever $x \le 0$. On the other hand, $f(x) = -x^2 q^T M^{-1} q - 2x(q^T M^{-1} \hat{D} p - r) - p^T \hat{D} M^{-1} \hat{D} p.$ **Proof of Theorem:** We need to justify that, for some x > 0,

$$B = DA + A^{T}D = \begin{bmatrix} \hat{D}\hat{A} + \hat{A}^{T}\hat{D} & \hat{D}p + xq \\ p^{T}\hat{D} + xq^{T} & 2xr \end{bmatrix} \succ 0.$$

This, by lemma with $\alpha = \langle n-1 \rangle$ and $M = B[\alpha] = \hat{D}\hat{A} + \hat{A}^T\hat{D} \succ 0$, is equivalent to that for some x > 0,

$$f(x) = B/B[\alpha] = 2xr - (p^T \hat{D} + xq^T)M^{-1}(\hat{D}p + xq) > 0.$$
 (6)

From (6),
$$f(x) \le 0$$
 whenever $x \le 0$. On the other hand,
 $f(x) = -x^2 q^T M^{-1} q - 2x(q^T M^{-1} \hat{D} p - r) - p^T \hat{D} M^{-1} \hat{D} p.$

It suffices to show

$$\Delta = (q^T M^{-1} \hat{D} p - r)^2 - (q^T M^{-1} q) (p^T \hat{D} M^{-1} \hat{D} p) > 0.$$

$$\Delta = \det \begin{bmatrix} -r + q^T M^{-1} \hat{D} p & q^T M^{-1} q \\ p^T \hat{D} M^{-1} \hat{D} p & -r + p^T \hat{D} M^{-1} q \end{bmatrix}$$

$$\begin{split} \Delta &= \det \left[\begin{array}{cc} -r + q^T M^{-1} \hat{D} p & q^T M^{-1} q \\ p^T \hat{D} M^{-1} \hat{D} p & -r + p^T \hat{D} M^{-1} q \end{array} \right] \\ &= r^2 \det \left(l_2 - \left[\begin{array}{c} r^{-1} \\ r^{-1} \end{array} \right] \left[\begin{array}{c} q^T \\ p^T \hat{D} \end{array} \right] \left[\begin{array}{c} M^{-1} \hat{D} p & M^{-1} q \end{array} \right] \right). \end{split}$$

$$\begin{split} \Delta &= \det \left[\begin{array}{cc} -r + q^T M^{-1} \hat{D} p & q^T M^{-1} q \\ p^T \hat{D} M^{-1} \hat{D} p & -r + p^T \hat{D} M^{-1} q \end{array} \right] \\ &= r^2 \det \left(l_2 - \left[\begin{array}{c} r^{-1} \\ r^{-1} \end{array} \right] \left[\begin{array}{c} q^T \\ p^T \hat{D} \end{array} \right] \left[\begin{array}{c} M^{-1} \hat{D} p & M^{-1} q \end{array} \right] \right). \end{split}$$

By Sylvester's determinant theorem, we have

$$\Delta = r^2 \det \left(I_{n-1} - \begin{bmatrix} M^{-1}\hat{D}p & M^{-1}q \end{bmatrix} \begin{bmatrix} r^{-1} & \\ & r^{-1} \end{bmatrix} \begin{bmatrix} q^T \\ p^T\hat{D} \end{bmatrix} \right).$$

$$\begin{split} \Delta &= \det \left[\begin{array}{cc} -r + q^T M^{-1} \hat{D} p & q^T M^{-1} q \\ p^T \hat{D} M^{-1} \hat{D} p & -r + p^T \hat{D} M^{-1} q \end{array} \right] \\ &= r^2 \det \left(l_2 - \left[\begin{array}{c} r^{-1} \\ r^{-1} \end{array} \right] \left[\begin{array}{c} q^T \\ p^T \hat{D} \end{array} \right] \left[\begin{array}{c} M^{-1} \hat{D} p & M^{-1} q \end{array} \right] \right). \end{split}$$

By Sylvester's determinant theorem, we have $\Delta = r^2 \det \left(I_{n-1} - \begin{bmatrix} M^{-1}\hat{D}p & M^{-1}q \end{bmatrix} \begin{bmatrix} r^{-1} & \\ & r^{-1} \end{bmatrix} \begin{bmatrix} q^T \\ p^T\hat{D} \end{bmatrix} \right).$

Continuing with the above, we finally arrive at

$$\Delta = r^2 \det(M^{-1}) \det(\hat{D}S + S^T \hat{D}) > 0,$$

where $S = A/A[\{n\}]$.

We may specify all the feasible positive $D[\{n\}] = x$ values in a diagonal solution $D = \begin{bmatrix} \hat{D} \\ x \end{bmatrix}$ as follows:

• x is in, but does not exceed, $0 \le x_1 < x < x_2 \le \infty$, where

$$x_1 = \frac{p^T \hat{D} M^{-1} \hat{D} p}{\sqrt{\Delta} - (q^T M^{-1} \hat{D} p - r)}$$

and

$$x_2 = \frac{\sqrt{\Delta} - (q^T M^{-1} \hat{D} p - r)}{q^T M^{-1} q},$$

with

$$M = \hat{D}\hat{A} + \hat{A}^{\mathsf{T}}\hat{D}$$

and

$$\Delta = (q^T M^{-1} \hat{D} p - r)^2 - (q^T M^{-1} q)(p^T \hat{D} M^{-1} \hat{D} p).$$

In particular, when $q = 0$, $x_1 = \frac{p^T \hat{D} M^{-1} \hat{D} p}{2r}$ and $x_2 = \infty$.

Corollary 1

Let $A \in \mathbb{R}^{n \times n}$ and $\alpha = \langle n \rangle \setminus \{k\}$ for some $1 \le k \le n$. Then, A is diagonally stable matrix that has a diagonal solution D with $D[\alpha] = \hat{D}$ and $D[\{k\}] = x$ if and only if the following are true:

(i)
$$A[\{k\}] > 0.$$

- (ii) A[α] and the Schur complement A/A[{k}] share a common diagonal solution D̂.
 - The diagonal stability of a matrix A is preserved under simultaneous row and column permutations on A.
 - If a matrix A is diagonally stable, then any Schur complement A/A[α] is also diagonally stable for any α ⊆ ⟨n⟩.

Corollary 2

Let $A^{(1)}, A^{(2)}, \ldots, A^{(m)} \in \mathbb{R}^{n \times n}$ be each partitioned as $A^{(k)} = \begin{bmatrix} \hat{A}^{(k)} & p^{(k)} \\ (q^{(k)})^T & r^{(k)} \end{bmatrix}$, where $\hat{A}^{(k)} \in \mathbb{R}^{(n-1) \times (n-1)}$. Then $A^{(1)}, A^{(2)}, \ldots, A^{(m)}$ have a common diagonal solution in the form $D = \begin{bmatrix} \hat{D} \\ x \end{bmatrix}$, with $\hat{D} \in \mathbb{R}^{(n-1) \times (n-1)}$, if and only if the following are true: (i) $r^{(k)} > 0, \ k = 1, 2, \ldots, m$. (ii) $\hat{A}^{(k)}$ and $A^{(k)}/A^{(k)}[\{n\}], \ k = 1, 2, \ldots, m$, have \hat{D} as a common diagonal solution. (iii) $x_1 < x_2$, where $x_1 = \max_{1 \le k \le m} x_1^{(k)}, \ x_2 = \min_{1 \le k \le m} x_2^{(k)}$, and where for each k, $0 \le x_1^{(k)} < x_2^{(k)} \le \infty$ are such that

$$x_1^{(k)} = \frac{(p^{(k)})^T \hat{D}(M^{(k)})^{-1} \hat{D} p^{(k)}}{\sqrt{\Delta^{(k)}} - ((q^{(k)})^T (M^{(k)})^{-1} \hat{D} p^{(k)} - r^{(k)})}$$

and

$$\mathbf{x}_{2}^{(k)} = rac{\sqrt{\Delta^{(k)}} - \left((q^{(k)})^{T} (\mathcal{M}^{(k)})^{-1} \hat{D} p^{(k)} - r^{(k)}
ight)}{(q^{(k)})^{T} (\mathcal{M}^{(k)})^{-1} q^{(k)}},$$

with

$$M^{(k)} = \hat{D}\hat{A}^{(k)} + (\hat{A}^{(k)})^{T}\hat{D}$$

Corollary 3

For
$$k = 1, 2, ..., m$$
, let $A^{(k)} = [a_{i,j}^{(k)}] \in \mathbb{R}^{2 \times 2}$. Then, $A^{(1)}, A^{(2)}, ..., A^{(m)}$
have a common diagonal solution $D = \begin{bmatrix} 1 \\ x \end{bmatrix}$ if and only if the
following hold:

(i) $A^{(1)}, A^{(2)}, \dots, A^{(m)}$ are all *P*-matrices. (ii) $x_1 < x_2$, where $x_1 = \max_{1 \le k \le m} x_1^{(k)}$, $x_2 = \min_{1 \le k \le m} x_2^{(k)}$, and where for each $k, 0 \le x_1^{(k)} < x_2^{(k)} \le \infty$ are such that

$$x_1^{(k)} = \left(rac{a_{1,2}^{(k)}}{\sqrt{a_{1,1}^{(k)}a_{2,2}^{(k)}} + \sqrt{\det(A^{(k)})}}
ight)^2$$

and

$$x_2^{(k)} = \left(rac{\sqrt{a_{1,1}^{(k)}a_{2,2}^{(k)}} + \sqrt{\det(A^{(k)})}}{a_{2,1}^{(k)}}
ight)^2$$

•

$$A_1 = \begin{bmatrix} 2 & 1 & -1 \\ -2 & 1 & -3 \\ -4 & 3 & 4 \end{bmatrix}, A_2 = \begin{bmatrix} 4 & 4 & -1 \\ -2 & 4 & 2 \\ 0 & 3 & 2 \end{bmatrix}, A_3 = \begin{bmatrix} 1 & -3 & 2 \\ 6 & 2 & -1 \\ -6 & -1 & 3 \end{bmatrix}.$$

$$A_1 = \begin{bmatrix} 2 & 1 & -1 \\ -2 & 1 & -3 \\ -4 & 3 & 4 \end{bmatrix}, A_2 = \begin{bmatrix} 4 & 4 & -1 \\ -2 & 4 & 2 \\ 0 & 3 & 2 \end{bmatrix}, A_3 = \begin{bmatrix} 1 & -3 & 2 \\ 6 & 2 & -1 \\ -6 & -1 & 3 \end{bmatrix}.$$

• Taking
$$\alpha = \langle 2 \rangle$$
, we obtain from Corollary 3 that $A_1[\alpha]$, $A_1/A_1[\alpha^c]$, $A_2[\alpha]$, $A_2[\alpha]$, $A_2[\alpha^c]$, $A_3[\alpha]$, and $A_3/A_3[\alpha^c]$ have a common diagonal solution
 $\hat{D} = \begin{bmatrix} 1 \\ x \end{bmatrix}$, where $0.877 \approx \frac{121}{4(2+\sqrt{15})^2} < x < \frac{(\sqrt{2}+2\sqrt{5})^2}{36} \approx 0.962$.

$$A_1 = \begin{bmatrix} 2 & 1 & -1 \\ -2 & 1 & -3 \\ -4 & 3 & 4 \end{bmatrix}, A_2 = \begin{bmatrix} 4 & 4 & -1 \\ -2 & 4 & 2 \\ 0 & 3 & 2 \end{bmatrix}, A_3 = \begin{bmatrix} 1 & -3 & 2 \\ 6 & 2 & -1 \\ -6 & -1 & 3 \end{bmatrix}.$$

• Taking
$$\alpha = \langle 2 \rangle$$
, we obtain from Corollary 3 that $A_1[\alpha]$, $A_1/A_1[\alpha^c]$, $A_2[\alpha]$, $A_2/A_2[\alpha^c]$, $A_3[\alpha]$, and $A_3/A_3[\alpha^c]$ have a common diagonal solution
 $\hat{D} = \begin{bmatrix} 1 \\ x \end{bmatrix}$, where $0.877 \approx \frac{121}{4(2+\sqrt{15})^2} < x < \frac{(\sqrt{2}+2\sqrt{5})^2}{36} \approx 0.962$.

• If we choose, for example, x = 0.9 and assume that $D = \begin{bmatrix} \hat{D} \\ y \end{bmatrix}$, then we can apply Corollary 2 on A_1 , A_2 , and A_3 to determine that

$$0.604 \approx \frac{1026}{1393 + \sqrt{93649}} < y < \frac{1347 + 6\sqrt{6389}}{2570} \approx 0.71.$$

$$A_1 = \begin{bmatrix} 2 & 1 & -1 \\ -2 & 1 & -3 \\ -4 & 3 & 4 \end{bmatrix}, A_2 = \begin{bmatrix} 4 & 4 & -1 \\ -2 & 4 & 2 \\ 0 & 3 & 2 \end{bmatrix}, A_3 = \begin{bmatrix} 1 & -3 & 2 \\ 6 & 2 & -1 \\ -6 & -1 & 3 \end{bmatrix}.$$

• Taking
$$\alpha = \langle 2 \rangle$$
, we obtain from Corollary 3 that $A_1[\alpha]$, $A_1/A_1[\alpha^c]$, $A_2[\alpha]$, $A_2/A_2[\alpha^c]$, $A_3[\alpha]$, and $A_3/A_3[\alpha^c]$ have a common diagonal solution
 $\hat{D} = \begin{bmatrix} 1 \\ x \end{bmatrix}$, where $0.877 \approx \frac{121}{4(2+\sqrt{15})^2} < x < \frac{(\sqrt{2}+2\sqrt{5})^2}{36} \approx 0.962$.

• If we choose, for example, x = 0.9 and assume that $D = \begin{bmatrix} D \\ y \end{bmatrix}$, then we can apply Corollary 2 on A_1 , A_2 , and A_3 to determine that

$$0.604 \approx \frac{1026}{1393 + \sqrt{93649}} < y < \frac{1347 + 6\sqrt{6389}}{2570} \approx 0.71.$$

• Hence, given any y in the above range, A_1 , A_2 , and A_3 share a common diagonal solution in the form $D = \begin{bmatrix} 1 \\ 0.9 \\ y \end{bmatrix}$.

Figure 1: Change in the smallest eigenvalue of $Q_i = DA_i + A_i^T D$, i=1,2,3, depending on y, the last diagonal entry of D.

Theorem (Barker, Berman and Plemmons, 1978)

A matrix $A \in \mathbb{R}^{n \times n}$ is diagonally stable if and only if for every nonzero $X \succeq 0$, AX has a positive diagonal entry.

Theorem (Barker, Berman and Plemmons, 1978)

A matrix $A \in \mathbb{R}^{n \times n}$ is diagonally stable if and only if for every nonzero $X \succeq 0$, AX has a positive diagonal entry.

Theorem (Berman, Goldberg and Shorten, 2014)

Let $\mathcal{A} = \{A^{(1)}, A^{(2)}, \dots, A^{(m)}\} \subset \mathbb{R}^{n \times n}$. Then, \mathcal{A} has a common diagonal solution if and only if for any $X^{(k)} \succeq 0$, $k = 1, 2, \dots, m$, not all of them zero, $\sum_{k=1}^{m} A^{(k)} X^{(k)}$ has a positive diagonal entry.

Theorem (Kraaijevanger, 1991)

The following statements are equivalent for a matrix $A \in \mathbb{R}^{n \times n}$:

- (i) A is diagonally stable.
- (ii) $A \circ S$ is a *P*-matrix for all $S \succeq 0$ with diagonal entries all being 1.
- (iii) A has positive diagonal entries and $det(A \circ S) > 0$ for all $S \succeq 0$ with diagonal entries all being 1.
 - Hadamard product of two matrices $A = [a_{i,j}] \in \mathbb{R}^{n \times n}$ and $B = [b_{i,j}] \in \mathbb{R}^{n \times n}$ is the matrix $A \circ B = [a_{i,j}b_{i,j}] \in \mathbb{R}^{n \times n}$.
 - A matrix A is called a *P*-matrix (*P*₀-matrix) if all its principal minors are positive (nonnegative).

Theorem (Kraaijevanger, 1991)

The following statements are equivalent for a matrix $A \in \mathbb{R}^{n \times n}$:

- (i) A is diagonally stable.
- (ii) $A \circ S$ is a *P*-matrix for all $S \succeq 0$ with diagonal entries all being 1.
- (iii) A has positive diagonal entries and $det(A \circ S) > 0$ for all $S \succeq 0$ with diagonal entries all being 1.
 - Hadamard product of two matrices $A = [a_{i,j}] \in \mathbb{R}^{n \times n}$ and $B = [b_{i,j}] \in \mathbb{R}^{n \times n}$ is the matrix $A \circ B = [a_{i,j}b_{i,j}] \in \mathbb{R}^{n \times n}$.
 - A matrix A is called a *P*-matrix (*P*₀-matrix) if all its principal minors are positive (nonnegative).
 - We shall extend Kraaijevanger's result to a new characterization for a set of matrices to share a common diagonal solution.
 - Accordingly, we shall extend *P*-matrices by introducing a new notion called *P*-sets.

Lemma (Fiedler and Ptak, 1962)

Let $A \in \mathbb{R}^{n \times n}$. Then, A is a P-matrix if and only if for any nonzero $x \in \mathbb{R}^n$, $x_i(Ax)_i > 0$ for some index *i*.

Lemma (Fiedler and Ptak, 1962)

Let $A \in \mathbb{R}^{n \times n}$. Then, A is a P-matrix if and only if for any nonzero $x \in \mathbb{R}^n$, $x_i(Ax)_i > 0$ for some index *i*.

Definition

Given $\mathcal{A} = \{A^{(1)}, A^{(2)}, \dots, A^{(m)}\} \subset \mathbb{R}^{n \times n}$, we define \mathcal{A} as a \mathcal{P} -set if for any $x^{(k)} \in \mathbb{R}^n$, $k = 1, 2, \dots, m$, not all of them zero, there exists some index i such that $\sum_{k=1}^m x_i^{(k)} (\mathcal{A}^{(k)} x^{(k)})_i > 0$.

Lemma (Fiedler and Ptak, 1962)

Let $A \in \mathbb{R}^{n \times n}$. Then, A is a P-matrix if and only if for any nonzero $x \in \mathbb{R}^n$, $x_i(Ax)_i > 0$ for some index *i*.

Definition

Given $\mathcal{A} = \{A^{(1)}, A^{(2)}, \dots, A^{(m)}\} \subset \mathbb{R}^{n \times n}$, we define \mathcal{A} as a \mathcal{P} -set if for any $x^{(k)} \in \mathbb{R}^n$, $k = 1, 2, \dots, m$, not all of them zero, there exists some index i such that $\sum_{k=1}^m x_i^{(k)} (\mathcal{A}^{(k)} x^{(k)})_i > 0$.

Theorem

Let $\mathcal{A} = \{A^{(1)}, A^{(2)}, \dots, A^{(m)}\} \subset \mathbb{R}^{n \times n}$. Then, \mathcal{A} is a \mathcal{P} -set if and only if for any $x^{(k)} \in \mathbb{R}^n$, $k = 1, 2, \dots, m$, not all of them zero, $\sum_{k=1}^{m} A^{(k)} x^{(k)} (x^{(k)})^T$ has a positive diagonal entry.

• If \mathcal{A} has a common diagonal solution, then it is a \mathcal{P} -set.

Main Theorem-1

Given $\mathcal{A} = \{\mathcal{A}^{(1)}, \mathcal{A}^{(2)}, \dots, \mathcal{A}^{(m)}\} \subset \mathbb{R}^{n \times n}$, the following are equivalent:

- (i) \mathcal{A} has a common diagonal solution.
- (ii) $\{A^{(1)} \circ S^{(1)}, A^{(2)} \circ S^{(2)}, \dots, A^{(m)} \circ S^{(m)}\}\$ has a common diagonal solution for all $S^{(k)} \succeq 0, \ k = 1, 2, \dots, m$, each with diagonal entries being all 1.
- (iii) $\{A^{(1)} \circ S^{(1)}, A^{(2)} \circ S^{(2)}, \dots, A^{(m)} \circ S^{(m)}\}\$ is a \mathcal{P} -set for all $S^{(k)} \succeq 0, k = 1, 2, \dots, m$, each with diagonal entries being all 1.

Outline of the proof:

$$\underbrace{(\mathbf{i}) \Rightarrow (\mathbf{i}\mathbf{i}):}_{(\mathbf{i}) = \mathbf{i}} \text{Let } A^{(k)}D + D(A^{(k)})^{T} \succ 0 \text{ for all } k. \text{ Then}} \\ (A^{(k)} \circ S^{(k)})D + D(A^{(k)} \circ S^{(k)})^{T} = (A^{(k)}D + DA^{(k)}) \circ S^{(k)} \succ 0.$$
(7)
$$\underbrace{(\mathbf{i}\mathbf{i}) \Rightarrow (\mathbf{i}\mathbf{i}):}_{(\mathbf{i}\mathbf{i}\mathbf{i}) = \mathbf{i}} \mathcal{P}\text{-set property is a necessary condition of simultaneous diagonal stability.}$$
(7)
$$\underbrace{(\mathbf{i}\mathbf{i}\mathbf{i}) \Rightarrow (\mathbf{i}\mathbf{i}:}_{S^{(k)} \succeq 0} \text{ can be expressed in the form } X^{(k)} = D^{(k)}S^{(k)}D^{(k)} \text{ for some}} \\ S^{(k)} \succeq 0, \text{ whose diagonal entries all equal to } 1, \text{ where } D^{(k)} \text{ is the diagonal matrix with}} \\ D^{(k)}_{i,i} = \sqrt{X^{(k)}_{i,i}}, i = 1, 2, \dots, n. \text{ Let } y^{(k)} \in \mathbb{R}^{n} \text{ be such that } y^{(k)}_{i} = D^{(k)}_{i,i} \text{ for all } i. \text{ Then,} \\ \\ \left[\sum_{k=1}^{m} (A^{(k)} \circ S^{(k)})y^{(k)}(y^{(k)})^{T}\right]_{j,j} = \left[\sum_{k=1}^{m} A^{(k)}X^{(k)}\right]_{j,j}$$
(8)

Theorem

Assume $\mathcal{A} = \{A^{(1)}, A^{(2)}, \dots, A^{(m)}\} \subset \mathbb{R}^{n \times n}$. Then, \mathcal{A} is a \mathcal{P} -set if and only if $\sum_{k=1}^{m} \mathcal{A}^{(k)} \circ y^{(k)} (y^{(k)})^{T}$ is a \mathcal{P} -matrix for any $y^{(k)} \in \mathbb{R}^{n}$, $k = 1, 2, \dots, m$, such that for each index $i, y_{i}^{(k)} \neq 0$ for some $1 \leq k \leq m$.

Theorem

Assume $\mathcal{A} = \{A^{(1)}, A^{(2)}, \dots, A^{(m)}\} \subset \mathbb{R}^{n \times n}$. Then, \mathcal{A} is a \mathcal{P} -set if and only if $\sum_{k=1}^{m} A^{(k)} \circ y^{(k)} (y^{(k)})^{T}$ is a \mathcal{P} -matrix for any $y^{(k)} \in \mathbb{R}^{n}$, $k = 1, 2, \dots, m$, such that for each index $i, y_{i}^{(k)} \neq 0$ for some $1 \leq k \leq m$.

Main Theorem-2

Given $\mathcal{A} = \{A^{(1)}, A^{(2)}, \dots, A^{(m)}\} \subset \mathbb{R}^{n \times n}$, the following are equivalent:

(i) \mathcal{A} has a common diagonal solution.

(ii)
$$\sum_{k=1}^{m} A^{(k)} \circ S^{(k)} \text{ is a } P \text{-matrix for all } S^{(k)} \succeq 0, \ k = 1, 2, \dots, m, \text{ provided that for any index } 1 \le i \le n, \ S^{(k)}_{i,i} = 1 \text{ for some } 1 \le k \le m.$$

(iii) $A^{(k)}_{i,i} > 0 \text{ for } i = 1, 2, \dots, n \text{ and } k = 1, 2, \dots, m, \text{ and } \det \left(\sum_{k=1}^{m} A^{(k)} \circ S^{(k)}\right) > 0 \text{ for all } S^{(k)} \succeq 0, \ k = 1, 2, \dots, m, \text{ provided that for any index } 1 \le i \le n, \ S^{(k)}_{i,i} = 1 \text{ for some } 1 \le k \le m.$

α -Stability

- Consider a partition α = {α₁,..., α_p} of ⟨n⟩, where
 ⟨n⟩ = α₁ ∪ ··· ∪ α_p with these α_k being nonempty and mutually exclusive. When p = 1, we simply write α = ⟨n⟩.
- A block diagonal matrix with diagonal blocks indexed by α₁,..., α_p is said to be α-diagonal.
- A diagonal matrix $D \in \mathbb{R}^{n \times n}$ is called α -scalar if, for each $1 \le k \le p$, $D[\alpha_k]$ is a scalar multiple of the identity matrix of the same size.

$$\begin{array}{c} \alpha \text{-diagonal} & \alpha \text{-scalar} \\ A = \begin{bmatrix} A_1 & & \\ & A_2 & \\ & & \ddots & \\ & & & A_p \end{bmatrix} & D = \begin{bmatrix} c_1 I_1 & & \\ & c_2 I_2 & & \\ & & \ddots & \\ & & & c_p I_p \end{bmatrix} \\ A_k \in \mathbb{R}^{n_k \times n_k} \text{ for } n_k = |\alpha_k| & I_k \in \mathbb{R}^{n_k \times n_k} \text{ for } n_k = |\alpha_k| \end{array}$$

Definition (Hershkowitz and Mashal, 1998)

Let $\alpha = \{\alpha_1, \ldots, \alpha_p\}$ be a of $\langle n \rangle$. A matrix $A \in \mathbb{R}^{n \times n}$ is said to be $H(\alpha)$ -stable (-semistable) if AH is stable (semistable) for any positive definite α -diagonal matrix H.

• In particular, $H(\langle n \rangle)$ -stability is also called *H*-stability.

Definition (Hershkowitz and Mashal, 1998)

Let $\alpha = \{\alpha_1, \ldots, \alpha_p\}$ be a of $\langle n \rangle$. A matrix $A \in \mathbb{R}^{n \times n}$ is said to be $H(\alpha)$ -stable (-semistable) if AH is stable (semistable) for any positive definite α -diagonal matrix H.

• In particular, $H(\langle n \rangle)$ -stability is also called *H*-stability.

Definition (Hershkowitz and Mashal, 1998)

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be Lyapunov α -scalar stable (semistable) if there exists some positive definite α -scalar matrix D such that

$$AD + DA^T \succ 0 \quad (AD + DA^T \succeq 0).$$

 We shall abbreviate Lyapunov α-scalar stability as L(α)-stability and use the term L-stability when α = ⟨n⟩.

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be additive *D*-stable (-semistable) if A + D is stable (semistable) for any nonnegative diagonal matrix *D*.

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be additive *D*-stable (-semistable) if A + D is stable (semistable) for any nonnegative diagonal matrix *D*.

- Additive *D*-stability arises in diffusion models of biological systems after linearization at the equilibrium, and guarantees the asymptotic stability of the equilibrium.
- Additive *D*-stability has also found applications in neural networks, mathematical economics and mathematical ecology.

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be additive *D*-stable (-semistable) if A + D is stable (semistable) for any nonnegative diagonal matrix *D*.

- Additive *D*-stability arises in diffusion models of biological systems after linearization at the equilibrium, and guarantees the asymptotic stability of the equilibrium.
- Additive *D*-stability has also found applications in neural networks, mathematical economics and mathematical ecology.

Theorem

Let $A \in \mathbb{R}^{n \times n}$. Then, A is additive D-stable if A is stable and $L(\alpha)$ -semistable for some partition α of $\langle n \rangle$,

Let α be a partition of $\langle n \rangle$. Then, a matrix $A \in \mathbb{R}^{n \times n}$ is said to be additive $H(\alpha)$ -stable (-semistable) if A + H is stable (semistable) for any positive semidefinite α -diagonal matrix H.

When α = {{1},..., {n}}, additive H(α)-stability is same as additive D-stability. When α = ⟨n⟩, we also use the term additive H-stability in place of H(⟨n⟩)-stability.

Let α be a partition of $\langle n \rangle$. Then, a matrix $A \in \mathbb{R}^{n \times n}$ is said to be additive $H(\alpha)$ -stable (-semistable) if A + H is stable (semistable) for any positive semidefinite α -diagonal matrix H.

- When α = {{1},..., {n}}, additive H(α)-stability is same as additive D-stability. When α = ⟨n⟩, we also use the term additive H-stability in place of H(⟨n⟩)-stability.
- Additive H(α)-stability can be interpreted as a criterion for the equilibrium of the following general diffusion problem to be asymptotically stable:

$$\frac{\partial u}{\partial t} = \sum_{i,j=1}^{n} h_{i,j} \frac{\partial^2 u}{\partial x_i \partial x_j} + f(u),$$

where $H = [h_{i,j}] \succeq 0$. Additive $H(\alpha)$ -stability arises if, in addition, H has an α -diagonal structure.

Lemma (Fiedler and Ptak, 1966)

Let $A \in \mathbb{R}^{n \times n}$. Then, A is a P_0 -matrix if and only if for any nonzero $x \in \mathbb{R}^n$, there exists an index *i* such that $x_i \neq 0$ and $x_i(Ax)_i \geq 0$.

Lemma (Fiedler and Ptak, 1966)

Let $A \in \mathbb{R}^{n \times n}$. Then, A is a P_0 -matrix if and only if for any nonzero $x \in \mathbb{R}^n$, there exists an index *i* such that $x_i \neq 0$ and $x_i(Ax)_i \geq 0$.

Definition

Let $\alpha = \{\alpha_1, \ldots, \alpha_p\}$ be a partition of $\langle n \rangle$. A nonsingular matrix $A \in \mathbb{R}^{n \times n}$ is said to be a $P_0(\alpha)$ -matrix if for any nonzero $x \in \mathbb{R}^n$, there exists some $1 \le k \le p$ such that $(Ax)[\alpha_k] \ne 0$ and $x[\alpha_k]^T(Ax)[\alpha_k] \ge 0$.

• For given $\beta \subseteq \langle n \rangle$, $x[\beta]$ is the subvector of x indexed by β .

Lemma (Fiedler and Ptak, 1966)

Let $A \in \mathbb{R}^{n \times n}$. Then, A is a P_0 -matrix if and only if for any nonzero $x \in \mathbb{R}^n$, there exists an index *i* such that $x_i \neq 0$ and $x_i(Ax)_i \geq 0$.

Definition

Let $\alpha = \{\alpha_1, \ldots, \alpha_p\}$ be a partition of $\langle n \rangle$. A nonsingular matrix $A \in \mathbb{R}^{n \times n}$ is said to be a $P_0(\alpha)$ -matrix if for any nonzero $x \in \mathbb{R}^n$, there exists some $1 \le k \le p$ such that $(Ax)[\alpha_k] \ne 0$ and $x[\alpha_k]^T(Ax)[\alpha_k] \ge 0$.

- For given $\beta \subseteq \langle n \rangle$, $x[\beta]$ is the subvector of x indexed by β .
- When $\alpha = \{\{1\}, \ldots, \{n\}\}$, a $P_0(\alpha)$ -matrix is a nonsingular P_0 -matrix. When $\alpha = \langle n \rangle$, a $P_0(\alpha)$ -matrix is a nonsingular positive semidefinite, but not necessarily symmetric, matrix.
- The notion of P₀(α)-matrices bridges such general positive semidefinite matrices and nonsingular P₀-matrices.

Main Results

Regular matrix stability

 α -stability

• A one way implication means that the converse does not hold in general.

Main Results

• A one way implication means that the converse does not hold in general.

mgumus@siu.edu (SIUC)

 A ∈ ℝ^{n×n} is a nonsingular P₀-matrix if and only if A + D is nonsingular for any nonnegative diagonal matrix D if and only if A is nonsingular and A + D is nonsingular for any positive diagonal matrix D.

Conjecture 1

Let α be a partition of $\langle n \rangle$ and $A \in \mathbb{R}^{n \times n}$. Then, the following are equivalent:

- (i) A is a $P_0(\alpha)$ -matrix.
- (ii) A + H is nonsingular for every positive semidefinite α -diagonal matrix H.
- (iii) A is nonsingular and A + H is nonsingular for every positive definite α -diagonal matrix H.

Conjecture 2

Let α be a partition of $\langle n \rangle$ and let $A \in \mathbb{R}^{n \times n}$. If A is $H(\alpha)$ -stable, then A is a $P_0(\alpha)$ -matrix.

On-going work

Theorem (Hershkowitz and Mashal, 1998)

Let $\alpha = {\alpha_1, \ldots, \alpha_r}$ be a partition of $\langle n \rangle$. Then, the following statements are equivalent for a matrix *A*:

(i) A is $L(\alpha)$ -stable.

(ii) For every nonzero $X \succeq 0$, there exists some $1 \le k \le r$ such that $tr((AX)[\alpha_k]) > 0$.

Theorem (Hershkowitz and Mashal, 1998)

Let $\alpha = {\alpha_1, \ldots, \alpha_r}$ be a partition of $\langle n \rangle$. Then, the following statements are equivalent for a matrix *A*:

(i) A is $L(\alpha)$ -stable.

(ii) $A \circ S$ is a $P(\alpha)$ -matrix for all $S \succeq 0$ with diagonal entries all being 1.

A ∈ ℝ^{n×n} is said to be a P(α)-matrix if for any nonzero x ∈ ℝⁿ, there exists some 1 ≤ k ≤ r such that x[α_k]^T(Ax)[α_k] > 0.

Let $\mathcal{A} = \{A^{(1)}, A^{(2)}, \dots, A^{(m)}\} \subset \mathbb{R}^{n \times n}$ and α be a partition of $\langle n \rangle$. If there exists some positive definite α -scalar matrix D such that

$$DA^{(j)} + (A^{(j)})^T D \succ 0, \ j = 1, 2, \dots, m,$$
 (9)

then *D* is called a common $L(\alpha)$ -solution for the matrix set *A*. The existence of such a *D* is interpreted as the simultaneous $L(\alpha)$ -stability of all the matrices in *A*.

Definition

Let
$$\mathcal{A} = \{A^{(1)}, A^{(2)}, \ldots, A^{(m)}\} \subset \mathbb{R}^{n \times n}$$
 and $\alpha = \{\alpha_1, \ldots, \alpha_r\}$ be a partition of $\langle n \rangle$. Then we define \mathcal{A} as a $\mathcal{P}(\alpha)$ -set if for any vector $x^{(j)} \in \mathbb{R}^n$, $j = 1, 2, \ldots, m$, not all of them zero, there exists $1 \le k \le r$ such that

$$\sum_{j=1}^{m} x^{(j)} [\alpha_k]^T (A^{(j)} x^{(j)}) [\alpha_k] > 0.$$

Theorem

Let $\mathcal{A} = \{A^{(1)}, A^{(2)}, \dots, A^{(m)}\} \subset \mathbb{R}^{n \times n}$ and $\alpha = \{\alpha_1, \dots, \alpha_r\}$ be a partition of $\langle n \rangle$. Then, \mathcal{A} has a common $\mathcal{L}(\alpha)$ -solution if and only if for any $X^{(j)} \succeq 0$, $j = 1, \dots, m$, not all of them zero, there exist $1 \leq k \leq r$ such that

$$\operatorname{tr}\Big(\sum_{j=1}^m \big(A^{(j)}X^{(j)}\big)[\alpha_k]\Big) > 0.$$

Theorem

Let $\mathcal{A} = \{A^{(1)}, A^{(2)}, \dots, A^{(m)}\} \subset \mathbb{R}^{n \times n}$ and $\alpha = \{\alpha_1, \dots, \alpha_r\}$ be a partition of $\langle n \rangle$. Then, \mathcal{A} has a common $\mathcal{L}(\alpha)$ -solution if and only if for any $X^{(j)} \succeq 0$, $j = 1, \dots, m$, not all of them zero, there exist $1 \leq k \leq r$ such that

$$\operatorname{tr}\Big(\sum_{j=1}^m \big(A^{(j)}X^{(j)}\big)[\alpha_k]\Big) > 0.$$

Theorem

Let $\mathcal{A} = \{A^{(1)}, A^{(2)}, \dots, A^{(m)}\} \subset \mathbb{R}^{n \times n}$ and $\alpha = \{\alpha_1, \dots, \alpha_r\}$ be a partition of $\langle n \rangle$. Then, the following are equivalent:

(i)
$$\mathcal{A}$$
 has a common $L(\alpha)$ -solution.

(iii)
$$\sum_{j=1}^{i} A^{(j)} \circ S^{(j)}$$
 is a $P(\alpha)$ -matrix for all $S^{(j)} \succeq 0, j = 1, 2, ..., m$, provided
that for any index $1 \le i \le n$, $S^{(j)}_{i,i} = 1$ for some $1 \le j \le m$.

- Explicit algebraic conditions for the diagonal stability and the simultaneous diagonal stability of higher order matrices.
- Extension of simultaneous diagonal stability problem to the simultaneous $L(\alpha)$ -stability case.
- Characterization of $H(\alpha)$ -stability and additive $H(\alpha)$ -stability.
- Stability properties of structured matrices.

Future works

• Sinc matrix $I^{(-1)} = S + \frac{1}{2}ee^{T}$, where $e \in \mathbb{R}^{n}$ is the vector of all ones and

$$S = \begin{bmatrix} s_0 & -s_1 & -s_2 & \cdots & -s_{n-1} \\ s_1 & s_0 & -s_1 & \cdots & -s_{n-2} \\ s_2 & s_1 & s_0 & \cdots & -s_{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ s_{n-1} & s_{n-2} & s_{n-3} & \cdots & s_0 \end{bmatrix},$$

and $s_k = \int_0^k sinc(x)dx$, where $sinc(x) = \frac{sin(\pi x)}{\pi x}$, $\forall x \neq 0$, while $sinc(0) = 1$.

- S is a skew-symmetric and Toeplitz matrix.
- A recent result confirmed that the Sinc matrix $I^{(-1)}$ is stable, but it is still unknown yet as to whether this matrix has *D*-stability, a problem key to various applications of Sinc methods.

mgumus@siu.edu (SIUC)

Lyapunov-Type Diagonal Stability

References

- M. Gumus, J. Xu, Some new results related to α-stability, *Linear and Multilinear Algebra*, DOI 10.1080/03081087.2016.1183562
- M. Gumus, J. Xu, On common diagonal Lyapunov solutions, *Linear Algebra and Its Applications*, 507: 32–50, 2016.
- A new characterization of simultaneous Lyapunov diagonal stability via Hadamard products with Dr. Jianhong Xu, submitted to Linear and Multilinear Algebra.
- A. Berman, F. Goldberg, R. Shorten, Comments on Lyapunov α-stability with some extensions, *Contemporary Math.*, 619 (2014) 19–29.
- R. Horn, C. Johnson, *Topics in Matrix Analysis*, Cambridge University Press, Cambridge, UK, 1991.
- R. Redheffer, Volterra multipliers II, SIAM Journal on Algebraic and Discrete Methods, 6(4): 612–623, 1985.
- R. Shorten and K. Narendra, On a theorem of Redheffer concerning diagonal stability, *Linear Algebra and Its Applications*, 431: 2317–2329, 2009.

THANK YOU