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Background and Preliminaries

Consider the first-order linear constant coefficient system of n
ordinary differential equations:

dx

dt
= A[x(t)− x̂ ] (1)

where A ∈ Rn×n and x(t), x̂ ∈ Rn.

x̂ is called an equilibrium for this system. If x(t) converges to x̂ as
t →∞ for every choice of the initial data x(0), the equilibrium x̂ is
said to be asymptotically stable.

The equilibrium is asymptotically stable if and only if each eigenvalue
of A has a negative real part. A matrix A satisfying this condition is
called a (Hurwitz) stable matrix.
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Definition

Let A ∈ Rn×n be symmetric matrix. Then A is said to be positive
semidefinite (positive definite) if x∗Ax ≥ 0 (x∗Ax > 0) for all nonzero
x ∈ Rn.

A symmetric matrix A ∈ Rn×n is positive semidefinite (positive
definite) if and only if all of its eigenvalues are nonnegative (positive).

A symmetric matrix A ∈ Rn×n is positive semidefinite (positive
definite) if and only if all its principal minors are nonnegative
(positive).

The determinant of a principal submatrix is called a principal minor.

We shall denote A � 0 (A � 0) when A is positive semidefinite
(positive definite).
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Definition

A matrix A ∈ Rn×n is said to be (positive) stable if each eigenvalue of A
has a positive real part.

Lyapunov’s Theorem

A matrix A ∈ Rn×n is stable if and only if there exists a P � 0 such that

PA + ATP � 0. (2)

Then, P is called a Lyapunov solution of (2).
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Definition

A matrix A ∈ Rn×n is said to be (Lyapunov) diagonally stable if there
exists a positive diagonal matrix D such that

DA + ATD � 0. (3)

Then, D is called a diagonal (Lyapunov) solution of (3).

Definition

Let A(1),A(2), . . . ,A(m) ∈ Rn×n. If there exists a positive diagonal matrix
D such that

DA(k) + (A(k))TD � 0, k = 1, 2, . . . ,m, (4)

then D is called a common diagonal (Lyapunov) solution of (4). The
existence of such a D is interpreted as the simultaneous diagonal stability
of A(1),A(2), . . . ,A(m).
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Let A =

[
1 −1
1 1

]
. The matrix A is stable, having the eigenvalues 1± i .

Choosing positive diagonal matrix D =

[
2

1

]
, we have

DA + ATD =

[
2

1

] [
1 −1
1 1

]
+

[
1 1
−1 1

] [
2

1

]
=

[
4 −1
−1 2

]
� 0,

thus A is a diagonally stable matrix.

Let B =

[
2 −1
2 0

]
. The matrix B is stable, having the eigenvalues 1± i .

However, B is not a diagonally stable matrix.

DB + BTD =

[
d1

d2

] [
2 −1
2 0

]
+

[
2 2
−1 0

] [
d1

d2

]
=

[
4d1 2d2 − d1

2d2 − d1 0

]
� 0.
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Applications of diagonal stability

Dynamic models for biochemical reactions

Systems theory

Population dynamics

Communication networks

Mathematical economics

Applications of simultaneous diagonal stability

Large-scale dynamic systems

Interconnected time-varying and switched systems
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A Necessary and Sufficient Condition Based on
Schur Complement

We shall denote 〈k〉 = {1, 2, . . . , k}. For A ∈ Rn×n, let A[α, β] be the
submatrix of A whose rows and columns are indexed by α, β ⊆ 〈n〉,
respectively, and let A[α] = A[α, α].

The Schur complement of A[α] in A is defined as

A/A[α] = A[αc ]− A[αc , α]A[α]−1A[α, αc ], (5)

where αc = 〈n〉\α, provided that A[α] is nonsingular.

Consider, for example, the partitioned matrix A =

[
B C
D E

]
, where

A[α] = B, A[αc ] = E , A[αc , α] = D, and A[α, αc ] = C . Then,

A/A[α] = E − DB−1C .
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Theorem (Redheffer, 1985)

Let A ∈ Rn×n be a nonsingular matrix with A[{n}] > 0 and α = 〈n − 1〉.
Then, A is diagonally stable if and only if A[α] and A−1[α] have a
common diagonal solution.

Theorem (Shorten and Narendra, 2009)

Let A ∈ Rn×n be partitioned as A =

[
Â p
qT r

]
, where Â ∈ R(n−1)×(n−1)

and r > 0. Then, A is diagonally stable if and only if Â and Â− pqT

r
have

a common diagonal solution.

(
Â− pqT

r

)−1
= A−1[〈n − 1〉]
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Theorem

Let A ∈ Rn×n be partitioned as A =

[
Â p
qT r

]
, where Â ∈ R(n−1)×(n−1).

Then, A is diagonally stable with a diagonal solution D =

[
D̂

x

]
,

where D̂ ∈ R(n−1)×(n−1), if and only if the following are true:

(i) r > 0.

(ii) Â and the Schur complement A/A[{n}] = Â− pqT

r
share a common

diagonal solution D̂.
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Lemma (Horn and Johnson, 1985)

Suppose that B ∈ Rn×n is a symmetric matrix and α ⊂ 〈n〉. Then, B � 0
if and only if

B[α] � 0

and
B/B[α] � 0.

Slyvester’s Determinant Theorem

Let U ∈ Rn×m and V ∈ Rm×n. Then

det(In + UV ) = det(Im + VU),

where Ik is the k × k identity matrix.
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Proof of Theorem: We need to justify that, for some x > 0,

B = DA + ATD =

[
D̂Â + ÂT D̂ D̂p + xq

pT D̂ + xqT 2xr

]
� 0.

This, by lemma with α = 〈n − 1〉 and M = B[α] = D̂Â + ÂT D̂ � 0,
is equivalent to that for some x > 0,

f (x) = B/B[α] = 2xr − (pT D̂ + xqT )M−1(D̂p + xq) > 0. (6)

From (6), f (x) ≤ 0 whenever x ≤ 0. On the other hand,

f (x) = −x2qTM−1q − 2x(qTM−1D̂p − r)− pT D̂M−1D̂p.

It suffices to show

∆ = (qTM−1D̂p − r)2 − (qTM−1q)(pT D̂M−1D̂p) > 0.
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Hence, we calculate

∆ = det

[
−r + qTM−1D̂p qTM−1q

pT D̂M−1D̂p −r + pT D̂M−1q

]

= r2 det

(
I2 −

[
r−1

r−1

] [
qT

pT D̂

] [
M−1D̂p M−1q

])
.

By Sylvester’s determinant theorem, we have

∆ = r2 det

(
In−1 −

[
M−1D̂p M−1q

] [ r−1

r−1

] [
qT

pT D̂

])
.

Continuing with the above, we finally arrive at

∆ = r2 det(M−1) det(D̂S + ST D̂) > 0,

where S = A/A[{n}].
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We may specify all the feasible positive D[{n}] = x values in a diagonal

solution D =

[
D̂

x

]
as follows:

x is in, but does not exceed, 0 ≤ x1 < x < x2 ≤ ∞, where

x1 =
pT D̂M−1D̂p√

∆− (qTM−1D̂p − r)

and

x2 =

√
∆− (qTM−1D̂p − r)

qTM−1q
,

with
M = D̂Â + ÂT D̂

and
∆ = (qTM−1D̂p − r)2 − (qTM−1q)(pT D̂M−1D̂p).

In particular, when q = 0, x1 =
pT D̂M−1D̂p

2r
and x2 =∞.

mgumus@siu.edu (SIUC) Lyapunov-Type Diagonal Stability 12/01/2016 15 / 40



Corollary 1

Let A ∈ Rn×n and α = 〈n〉\{k} for some 1 ≤ k ≤ n. Then, A is
diagonally stable matrix that has a diagonal solution D with D[α] = D̂
and D[{k}] = x if and only if the following are true:

(i) A[{k}] > 0.

(ii) A[α] and the Schur complement A/A[{k}] share a common diagonal
solution D̂.

The diagonal stability of a matrix A is preserved under simultaneous
row and column permutations on A.

If a matrix A is diagonally stable, then any Schur complement A/A[α]
is also diagonally stable for any α ⊆ 〈n〉.
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Corollary 2

Let A(1),A(2), . . . ,A(m) ∈ Rn×n be each partitioned as A(k) =

[
Â(k) p(k)

(q(k))T r (k)

]
, where

Â(k) ∈ R(n−1)×(n−1). Then A(1),A(2), . . . ,A(m) have a common diagonal solution in the

form D =

[
D̂

x

]
, with D̂ ∈ R(n−1)×(n−1), if and only if the following are true:

(i) r (k) > 0, k = 1, 2, . . . ,m.

(ii) Â(k) and A(k)/A(k)[{n}], k = 1, 2, . . . ,m, have D̂ as a common diagonal solution.

(iii) x1 < x2, where x1 = max
1≤k≤m

x
(k)
1 , x2 = min

1≤k≤m
x
(k)
2 , and where for each k,

0 ≤ x
(k)
1 < x

(k)
2 ≤ ∞ are such that

x
(k)
1 =

(p(k))T D̂(M(k))−1D̂p(k)

√
∆(k) −

(
(q(k))T (M(k))−1D̂p(k) − r (k)

)
and

x
(k)
2 =

√
∆(k) −

(
(q(k))T (M(k))−1D̂p(k) − r (k)

)
(q(k))T (M(k))−1q(k)

,

with
M(k) = D̂Â(k) + (Â(k))T D̂.
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Corollary 3

For k = 1, 2, . . . ,m, let A(k) = [a
(k)
i ,j ] ∈ R2×2. Then, A(1), A(2), . . ., A(m)

have a common diagonal solution D =

[
1

x

]
if and only if the

following hold:

(i) A(1),A(2), . . . ,A(m) are all P-matrices.

(ii) x1 < x2, where x1 = max
1≤k≤m

x
(k)
1 , x2 = min

1≤k≤m
x
(k)
2 , and where for each

k , 0 ≤ x
(k)
1 < x

(k)
2 ≤ ∞ are such that

x
(k)
1 =

 a
(k)
1,2√

a
(k)
1,1a

(k)
2,2 +

√
det(A(k))

2

and

x
(k)
2 =


√
a
(k)
1,1a

(k)
2,2 +

√
det(A(k))

a
(k)
2,1

2

.
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Example

A1 =

 2 1 −1
−2 1 −3
−4 3 4

, A2 =

 4 4 −1
−2 4 2

0 3 2

, A3 =

 1 −3 2
6 2 −1
−6 −1 3

.

Taking α = 〈2〉, we obtain from Corollary 3 that A1[α], A1/A1[αc ], A2[α],
A2/A2[αc ], A3[α], and A3/A3[αc ] have a common diagonal solution

D̂ =

[
1

x

]
, where 0.877 ≈ 121

4
(
2 +
√

15
)2 < x <

(√
2 + 2

√
5
)2

36
≈ 0.962.

If we choose, for example, x = 0.9 and assume that D =

[
D̂

y

]
, then

we can apply Corollary 2 on A1, A2, and A3 to determine that

0.604 ≈ 1026

1393 +
√

93649
< y <

1347 + 6
√

6389

2570
≈ 0.71.

Hence, given any y in the above range, A1, A2, and A3 share a common

diagonal solution in the form D =

 1
0.9

y

.
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 4 4 −1
−2 4 2

0 3 2

, A3 =

 1 −3 2
6 2 −1
−6 −1 3

.

Taking α = 〈2〉, we obtain from Corollary 3 that A1[α], A1/A1[αc ], A2[α],
A2/A2[αc ], A3[α], and A3/A3[αc ] have a common diagonal solution

D̂ =

[
1

x

]
, where 0.877 ≈ 121

4
(
2 +
√

15
)2 < x <

(√
2 + 2

√
5
)2

36
≈ 0.962.

If we choose, for example, x = 0.9 and assume that D =

[
D̂

y

]
, then

we can apply Corollary 2 on A1, A2, and A3 to determine that

0.604 ≈ 1026

1393 +
√

93649
< y <

1347 + 6
√

6389

2570
≈ 0.71.

Hence, given any y in the above range, A1, A2, and A3 share a common

diagonal solution in the form D =
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0.9

y
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Figure 1: Change in the smallest eigenvalue of Qi = DAi + AT
i D, i=1,2,3,

depending on y, the last diagonal entry of D.
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A New Characterization for Common Diagonal Solutions

Theorem (Barker, Berman and Plemmons, 1978)

A matrix A ∈ Rn×n is diagonally stable if and only if for every nonzero
X � 0, AX has a positive diagonal entry.

Theorem (Berman, Goldberg and Shorten, 2014)

Let A = {A(1),A(2), . . . ,A(m)} ⊂ Rn×n. Then, A has a common diagonal
solution if and only if for any X (k) � 0, k = 1, 2, . . . ,m, not all of them

zero,
m∑

k=1

A(k)X (k) has a positive diagonal entry.
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Theorem (Kraaijevanger, 1991)

The following statements are equivalent for a matrix A ∈ Rn×n:

(i) A is diagonally stable.

(ii) A ◦ S is a P-matrix for all S � 0 with diagonal entries all being 1.

(iii) A has positive diagonal entries and det(A ◦ S) > 0 for all S � 0 with
diagonal entries all being 1.

Hadamard product of two matrices A = [ai ,j ] ∈ Rn×n and
B = [bi ,j ] ∈ Rn×n is the matrix A ◦ B = [ai ,jbi ,j ] ∈ Rn×n.

A matrix A is called a P-matrix (P0-matrix) if all its principal minors
are positive (nonnegative).

We shall extend Kraaijevanger’s result to a new characterization for a
set of matrices to share a common diagonal solution.

Accordingly, we shall extend P-matrices by introducing a new notion
called P-sets.
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Lemma (Fiedler and Ptak, 1962)

Let A ∈ Rn×n. Then, A is a P-matrix if and only if for any nonzero
x ∈ Rn, xi (Ax)i > 0 for some index i .

Definition

Given A = {A(1),A(2), . . . ,A(m)} ⊂ Rn×n, we define A as a P-set if for
any x (k) ∈ Rn, k = 1, 2, . . . ,m, not all of them zero, there exists some

index i such that
m∑

k=1

x
(k)
i (A(k)x (k))i > 0.

Theorem

Let A = {A(1),A(2), . . . ,A(m)} ⊂ Rn×n. Then, A is a P-set if and only if
for any x (k) ∈ Rn, k = 1, 2, . . . ,m, not all of them zero,
m∑

k=1

A(k)x (k)(x (k))T has a positive diagonal entry.

If A has a common diagonal solution, then it is a P-set.
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Main Theorem-1

Given A = {A(1),A(2), . . . ,A(m)} ⊂ Rn×n, the following are equivalent:

(i) A has a common diagonal solution.

(ii) {A(1) ◦ S (1),A(2) ◦ S (2), . . . ,A(m) ◦ S (m)} has a common diagonal solution for all
S (k) � 0, k = 1, 2, . . . ,m, each with diagonal entries being all 1.

(iii) {A(1) ◦ S (1),A(2) ◦ S (2), . . . ,A(m) ◦ S (m)} is a P-set for all S (k) � 0, k = 1, 2, . . . ,m,
each with diagonal entries being all 1.

Outline of the proof:

(i) ⇒ (ii): Let A(k)D + D(A(k))T � 0 for all k. Then

(A(k) ◦ S (k))D + D(A(k) ◦ S (k))T = (A(k)D + DA(k)) ◦ S (k) � 0. (7)

(ii) ⇒ (iii): P-set property is a necessary condition of simultaneous diagonal stability.

(iii) ⇒ (i): Any X (k) � 0 can be expressed in the form X (k) = D(k)S (k)D(k) for some

S (k) � 0, whose diagonal entries all equal to 1, where D(k) is the diagonal matrix with

D
(k)
i,i =

√
X

(k)
i,i , i = 1, 2, . . . , n. Let y (k) ∈ Rn be such that y

(k)
i = D

(k)
i,i for all i . Then,[

m∑
k=1

(A(k) ◦ S (k))y (k)(y (k))T
]
j,j

=

[
m∑

k=1

A(k)X (k)

]
j,j

(8)
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Theorem

Assume A = {A(1),A(2), . . . ,A(m)} ⊂ Rn×n. Then, A is a P-set if and only if
m∑

k=1

A(k) ◦ y (k)(y (k))T is a P-matrix for any y (k) ∈ Rn, k = 1, 2, . . . ,m, such that

for each index i , y
(k)
i 6= 0 for some 1 ≤ k ≤ m.

Main Theorem-2

Given A = {A(1),A(2), . . . ,A(m)} ⊂ Rn×n, the following are equivalent:

(i) A has a common diagonal solution.

(ii)
m∑

k=1

A(k) ◦ S (k) is a P-matrix for all S (k) � 0, k = 1, 2, . . . ,m, provided that

for any index 1 ≤ i ≤ n, S
(k)
i,i = 1 for some 1 ≤ k ≤ m.

(iii) A
(k)
i,i > 0 for i = 1, 2, . . . , n and k = 1, 2, . . . ,m, and

det
( m∑

k=1

A(k) ◦ S (k)
)
> 0 for all S (k) � 0, k = 1, 2, . . . ,m, provided that for

any index 1 ≤ i ≤ n, S
(k)
i,i = 1 for some 1 ≤ k ≤ m.
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α-Stability

Consider a partition α = {α1, . . . , αp} of 〈n〉, where
〈n〉 = α1 ∪ · · · ∪ αp with these αk being nonempty and mutually
exclusive. When p = 1, we simply write α = 〈n〉.
A block diagonal matrix with diagonal blocks indexed by α1, . . . , αp is
said to be α-diagonal.
A diagonal matrix D ∈ Rn×n is called α-scalar if, for each 1 ≤ k ≤ p,
D[αk ] is a scalar multiple of the identity matrix of the same size.

α-diagonal

A =


A1

A2

. . .

Ap


Ak ∈ Rnk×nk for nk = |αk |

α-scalar

D =


c1I1

c2I2
. . .

cpIp


Ik ∈ Rnk×nk for nk = |αk |
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Definition (Hershkowitz and Mashal, 1998)

Let α = {α1, . . . , αp} be a of 〈n〉. A matrix A ∈ Rn×n is said to be
H(α)-stable (-semistable) if AH is stable (semistable) for any positive
definite α-diagonal matrix H.

In particular, H(〈n〉)-stability is also called H-stability.

Definition (Hershkowitz and Mashal, 1998)

A matrix A ∈ Rn×n is said to be Lyapunov α-scalar stable (semistable) if
there exists some positive definite α-scalar matrix D such that

AD + DAT � 0 (AD + DAT � 0).

We shall abbreviate Lyapunov α-scalar stability as L(α)-stability and
use the term L-stability when α = 〈n〉.
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Definition

A matrix A ∈ Rn×n is said to be additive D-stable (-semistable) if A + D
is stable (semistable) for any nonnegative diagonal matrix D.

Additive D-stability arises in diffusion models of biological systems
after linearization at the equilibrium, and guarantees the asymptotic
stability of the equilibrium.

Additive D-stability has also found applications in neural networks,
mathematical economics and mathematical ecology.

Theorem

Let A ∈ Rn×n. Then, A is additive D-stable if A is stable and
L(α)-semistable for some partition α of 〈n〉,
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Definition

Let α be a partition of 〈n〉. Then, a matrix A ∈ Rn×n is said to be additive
H(α)-stable (-semistable) if A + H is stable (semistable) for any positive
semidefinite α-diagonal matrix H.

When α = {{1}, . . . , {n}}, additive H(α)-stability is same as additive
D-stability. When α = 〈n〉, we also use the term additive H-stability
in place of H(〈n〉)-stability.

Additive H(α)-stability can be interpreted as a criterion for the
equilibrium of the following general diffusion problem to be
asymptotically stable:

∂u

∂t
=

n∑
i ,j=1

hi ,j
∂2u

∂xi∂xj
+ f (u),

where H = [hi ,j ] � 0. Additive H(α)-stability arises if, in addition, H
has an α-diagonal structure.
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Lemma (Fiedler and Ptak, 1966)

Let A ∈ Rn×n. Then, A is a P0-matrix if and only if for any nonzero
x ∈ Rn, there exists an index i such that xi 6= 0 and xi (Ax)i ≥ 0.

Definition

Let α = {α1, . . . , αp} be a partition of 〈n〉. A nonsingular matrix
A ∈ Rn×n is said to be a P0(α)-matrix if for any nonzero x ∈ Rn, there
exists some 1 ≤ k ≤ p such that (Ax)[αk ] 6= 0 and x [αk ]T (Ax)[αk ] ≥ 0.

For given β ⊆ 〈n〉, x [β] is the subvector of x indexed by β.

When α = {{1}, . . . , {n}}, a P0(α)-matrix is a nonsingular
P0-matrix. When α = 〈n〉, a P0(α)-matrix is a nonsingular positive
semidefinite, but not necessarily symmetric, matrix.

The notion of P0(α)-matrices bridges such general positive
semidefinite matrices and nonsingular P0-matrices.
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Main Results

Regular matrix stability

A is diagonally stable.

⇓
A is additive D-stable.

⇓
A is nonsingular P0-matrix.

m
A + D is nonsingular for any
nonnegative diagonal matrix D

α-stability

A is L(α)-stable.

⇓
A is additive H(α)-stable.

⇓
A is a P0(α)-matrix.

m
A + H is nonsingular for
any α-diagonal H � 0.

A one way implication means that the converse does not hold in
general.
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Main Results

A is H-stable.

⇓
A is additive H-stable.

m

A is stable and A + bbT is
nonsingular for any b ∈ Rn.

m

A is stable and A + AT � 0.

m
A is stable and a P0(〈n〉)-matrix.

A is H-stable.

m
A + P is H-stable for
any P � 0.

A is H-stable.

⇓
A + K is L-stable for
any K � 0.

A one way implication means that the converse does not hold in
general.
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A ∈ Rn×n is a nonsingular P0-matrix if and only if A + D is
nonsingular for any nonnegative diagonal matrix D if and only if A is
nonsingular and A + D is nonsingular for any positive diagonal matrix
D.

Conjecture 1

Let α be a partition of 〈n〉 and A ∈ Rn×n. Then, the following are
equivalent:

(i) A is a P0(α)-matrix.

(ii) A + H is nonsingular for every positive semidefinite α-diagonal matrix
H.

(iii) A is nonsingular and A + H is nonsingular for every positive definite
α-diagonal matrix H.

Conjecture 2

Let α be a partition of 〈n〉 and let A ∈ Rn×n. If A is H(α)-stable, then A
is a P0(α)-matrix.
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On-going work

Theorem (Hershkowitz and Mashal, 1998)

Let α = {α1, . . . , αr} be a partition of 〈n〉. Then, the following
statements are equivalent for a matrix A:

(i) A is L(α)-stable.

(ii) For every nonzero X � 0, there exists some 1 ≤ k ≤ r such that
tr
(
(AX )[αk ]

)
> 0.

Theorem (Hershkowitz and Mashal, 1998)

Let α = {α1, . . . , αr} be a partition of 〈n〉. Then, the following
statements are equivalent for a matrix A:

(i) A is L(α)-stable.

(ii) A ◦ S is a P(α)-matrix for all S � 0 with diagonal entries all being 1.

A ∈ Rn×n is said to be a P(α)-matrix if for any nonzero x ∈ Rn,
there exists some 1 ≤ k ≤ r such that x [αk ]T (Ax)[αk ] > 0.
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Definition

Let A = {A(1),A(2), . . . ,A(m)} ⊂ Rn×n and α be a partition of 〈n〉. If
there exists some positive definite α-scalar matrix D such that

DA(j) + (A(j))TD � 0, j = 1, 2, . . . ,m, (9)

then D is called a common L(α)-solution for the matrix set A. The
existence of such a D is interpreted as the simultaneous L(α)-stability of
all the matrices in A.

Definition

Let A = {A(1),A(2), . . . ,A(m)} ⊂ Rn×n and α = {α1, . . . , αr} be a
partition of 〈n〉. Then we define A as a P(α)-set if for any vector
x (j) ∈ Rn, j = 1, 2, . . . ,m, not all of them zero, there exists 1 ≤ k ≤ r
such that

m∑
j=1

x (j)[αk ]T
(
A(j)x (j)

)
[αk ] > 0.

.
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Theorem

Let A = {A(1),A(2), . . . ,A(m)} ⊂ Rn×n and α = {α1, . . . , αr} be a partition of
〈n〉. Then, A has a common L(α)-solution if and only if for any X (j) � 0,
j = 1, . . . ,m, not all of them zero, there exist 1 ≤ k ≤ r such that

tr
( m∑

j=1

(
A(j)X (j)

)
[αk ]

)
> 0.

Theorem

Let A = {A(1),A(2), . . . ,A(m)} ⊂ Rn×n and α = {α1, . . . , αr} be a partition of
〈n〉. Then, the following are equivalent:

(i) A has a common L(α)-solution.

(ii) {A(1) ◦ S (1),A(2) ◦ S (2), . . . ,A(m) ◦ S (m)} is a P(α)-set for all S (j) � 0,
j = 1, 2, . . . ,m, with all diagonal entries are equal to 1.

(iii)
m∑
j=1

A(j) ◦ S (j) is a P(α)-matrix for all S (j) � 0, j = 1, 2, . . . ,m, provided

that for any index 1 ≤ i ≤ n, S
(j)
i,i = 1 for some 1 ≤ j ≤ m.
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Future works

Explicit algebraic conditions for the diagonal stability and the
simultaneous diagonal stability of higher order matrices.

Extension of simultaneous diagonal stability problem to the
simultaneous L(α)-stability case.

Characterization of H(α)-stability and additive H(α)-stability.

Stability properties of structured matrices.
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Future works

Sinc matrix I (−1) = S +
1

2
eeT , where e ∈ Rn is the vector of all ones

and

S =


s0 −s1 −s2 · · · −sn−1

s1 s0 −s1 · · · −sn−2

s2 s1 s0 · · · −sn−3
...

...
...

. . .
...

sn−1 sn−2 sn−3 · · · s0

 ,

and sk =

∫ k

0
sinc(x)dx , where sinc(x) =

sin(πx)

πx
, ∀x 6= 0, while

sinc(0) = 1.

S is a skew-symmetric and Toeplitz matrix.

A recent result confirmed that the Sinc matrix I (−1) is stable, but it is
still unknown yet as to whether this matrix has D-stability, a problem
key to various applications of Sinc methods.
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